Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Multi-Domain Component Based Modeling Toolset for Dynamic Integrated Power and Thermal System Modeling

2019-03-19
2019-01-1385
Design of modern aircraft relies heavily on modeling and simulation for reducing cost and improving performance. However, the complexity of aircraft architectures requires accurate modeling of dynamic components across many subsystems. Integrated power and thermal modeling necessitates dynamic simulations of liquid, air, and two-phase fluids within vapor cycle system components, air cycle machine and propulsion components, hydraulic components, and more while heat generation of many on-board electrical components must also be precisely calculated as well. Integration of these highly complex subsystems may result in simulations which are too computationally expensive for quickly modeling extensive variations of aircraft architecture, or will require simulations with reduced accuracy in order to provide computationally inexpensive models.
Journal Article

A First Principles Based Approach for Dynamic Modeling of Turbomachinery

2016-09-20
2016-01-1995
As the cost and complexity of modern aircraft systems increases, emphasis has been placed on model-based design as a means for reducing development cost and optimizing performance. To facilitate this, an appropriate modeling environment is required that allows developers to rapidly explore a wider design space than can cost effectively be considered through hardware construction and testing. This wide design space can then yield solutions that are far more energy efficient than previous generation designs. In addition, non-intuitive cross-coupled subsystem behavior can also be explored to ensure integrated system stability prior to hardware fabrication and testing. In recent years, optimization of control strategies between coupled subsystems has necessitated the understanding of the integrated system dynamics.
X