Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Computational Investigation of Lightweight Aero-Gel Insulation Materials and Gas Filled Panels (GFP) for Improved Occupant Thermal Comfort

2019-01-09
2019-26-0263
Energy efficient HVAC System is getting a significant attention from the automotive industries. By reducing environmental thermal load, it is expected to achieve a vehicle climate control system that requires less AC power on a vehicle while maintaining the occupant thermal comfort. In order to accomplish this, several technologies to reduce the environmental thermal load are required that includes a glazing system with solar reflecting glasses, highly effective thermal insulation materials, and vehicle interior weight reduction strategies. The structure of a vehicle can absorb a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air and the interior trim surface temperature [1].
Technical Paper

Numerical Evaluation of Vehicle Orientation and Glazing Material Impact on Cabin Climate and Occupant Thermal Comfort

2017-01-10
2017-26-0262
The structure of a vehicle is capable of absorbing a significant amount of heat when exposed to hot climate conditions. 50-70% of this heat penetrates through the glazing and raises both the internal cabin air temperature and the interior trim surface temperature. When driving away, the air conditioning system has to be capable of removing this heat in a timely manner, such that the occupant’s time to comfort will be achieved in an acceptable period [1]. When we reduce the amount of heat absorbed, the discomfort in the cabin can be reduced. A 1D/3D based integrated computational methodology is developed to evaluate the impact of vehicle orientation on cabin climate control system performance and human comfort in this paper. Additionally, effects of glazing material and blinds opening/closing are analyzed to access the occupant thermal comfort during initial and final time AC pull down test.
X