Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

A Methodology for Threat Assessment in Cut-in Vehicle Scenarios

2021-04-06
2021-01-0873
Advanced Driver Assistance System (ADAS) has become a common standard feature assisting greater safety and fuel efficiency in the latest automobiles. Yet some ADAS systems fail to improve driving comfort for vehicle occupants who expect human-like driving. One of the more difficult situations in ADAS-assisted driving involves instances with cut-in vehicles. In vehicle control, determining the moment at which the system recognizes a cut-in vehicle as an active target is a challenging task. A well-designed comprehensive threat assessment developed for cut-in vehicle driving scenarios should eliminate abrupt and excessive deceleration of the vehicle and produce a smooth and safe driving experience. This paper proposes a novel methodology for threat assessment for driving instances involving a cut-in vehicle. The methodology takes into consideration kinematics, vehicle dynamics, vehicle stability, road condition, and driving comfort.
Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
X