Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Engine Modelling with Smart Online DoE

2024-01-16
2024-26-0338
The implementation of TREM/CEV 5 emission norms on farm equipment will bring in cost pressure due to the need for exhaust after treatment systems. This cost increase needs to be reduced by bringing in more efficient and effective processes to shorten the development phase and to provide better fuel efficiencies. In this work ETAS ASCMO Online DoE with Constraint Modelling (ODCM) was applied to execute smart online DoE on a new common rail diesel engine with EGR, whose exact bounds of operation was not available. A Global test plan with ASCMO Static was created without much focus on detailed constraints of engine operation, other than the full load curve. The parameters which were selected were Speed, Torque, Rail Pressure, Main Timing, EGR Valve Position, Pilot Separation and Quantity and Post Quantity and Separation. For these parameters, the safe operating bounds were not available. This ASCMO Static test plan is automated and executed on engine test cell with ETAS INCAFlow.
Technical Paper

Front-Loading: Virtual Validation and Calibration on LABCAR

2024-01-16
2024-26-0247
The advent of BS6 coupled with RDE emission norms has increased the development efforts and costs due to the shear amount of testing and validation on real engines and vehicles which are necessitated by these stringent norms. Front-loading of tasks by moving actual vehicle and engine tasks on to virtual setup, will reduce the development efforts and costs significantly. This front-loading of tasks on to a LABCAR would need real time and highly accurate plant models, tools to parameterize these plant models and accurate data driven models to predict dynamic parameters like emissions. In this collaborative work between Maruti Suzuki India Ltd and ETAS India, ETAS VVTB and ICE plant models were parameterized with the data generated on engine test with ASCMO Global DoE test plan by using ASCMO MOCA. The ASCMO Global test plan also ensures the coverage of data points across the entire engine operating space. These plants models were optimized to an accuracy level of more than 95%.
Technical Paper

Global COR iDOE Methodology: An Efficient Way to Calibrate Medium & Heavy Commercial Vehicle Engine Emission and Fuel Consumption Calibration

2017-01-10
2017-26-0032
Modern day diesel engines use systems like Exhaust Gas Recirculation (EGR), Variable Geometric Turbo Charger (VGT), inlet throttle for air regulation, multiple injection strategies, high pressure rail systems for fuel regulation to optimize the combustion for meeting the strict emission and fuel consumption demands. Torque based ECU structures which are commonly used for diesel engines require a large amount of calibration work. Conventional manual methods for emission and fuel consumption optimization (Full factorial or Line search method) results in increased test bed usage and it is almost impossible to use these methods as the number of parameters to optimize are very high. The conventional DoE tests have been limited by the necessity of calibration engineer’s expertise and manual prescreening of test points to be within thermal & mechanical limits of engine systems. This subsequently leads to excessive screening of variables; which is time consuming.
X