Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Technical Paper

Virtual Development of a Single-Cylinder Engine for High Efficiency by the Adoption of eFuels, Methanol, Pre-Chamber and Millerization

2022-06-14
2022-37-0018
The new CO2 and emissions limits imposed to European manufacturers require the adoption of different innovative solutions, such as the use of potentially CO2-neutral synthetic fuels alongside a tailored development of the internal combustion engine, as an excellent solution to accompany the hybridization of vehicles. Dr.Ing. h.c. F. Porsche AG and FKFS, already partners for the development of engines with eFuels, propose a new study carried out on a research engine, investigating the combination of Porsche synthetic gasoline (POSYN) with an engine with millerization and passive pre-chamber. The use of CO2-neutral fuels allow for an immediate reduction in CO2 emissions from all cars already on the market, particularly since Porsche is one of the manufacturers whose cars remain in use for the longest time. The data collected on a single-cylinder engine test bench, for different fuels, with conventional spark plug are used as input for the calibration of 3D-CFD simulations.
Technical Paper

Methods to Investigate the Importance of eFuel Properties for Enhanced Emission and Mixture Formation

2021-09-05
2021-24-0017
Synthetic fuels from renewable energy sources can be a significant contribution on the roadmap to sustainable mobility. Porsche sees electro-mobility as the top priority, but eFuels produced by renewable electricity are an effective addition to support the defossilization of the transportation sector. In addition to the sustainability aspect, the composition and properties of eFuels can be optimized via the synthetic fuel production path. The use of optimized fuel formulations has a direct influence on combustion and emission behavior. The latter is one focus of the development of internal combustion engines in the wake of constantly tightening emissions legislation. The increasing restrictions on vehicles with internal combustion engines require the reduction of emissions. Particulate matter emissions are among others the focus of criticism. The composition and properties of fuels can reduce particulate emissions and the formation of unburned hydrocarbons to a high degree.
Technical Paper

Experimental and Numerical Investigation for Improved Mixture Formation of an eFuel Compared to Standard Gasoline

2021-09-05
2021-24-0019
The increasingly stringent targets for the automotive industry towards sustainability are being addressed not only with the improvement of engine efficiency, but also with growing research about alternative, synthetic, and CO2-neutral fuels. These fuels are produced using renewable energy sources, with the goal of making them CO2-neutral and also to reduce a significant amount of engine emissions, especially particulate matter (PM) and total hydrocarbon (THC). The objective of this work is to study the behavior and the potential of an eFuel developed by Porsche, called POSYN (POrscheSYNthetic) and to compare it with a standard gasoline.
Technical Paper

The Influence of eFuel Formulation on Post Oxidation and Cold Start Emissions

2021-04-06
2021-01-0632
The goal of reducing the impact of road transportation on the environment can be reached by different approaches. The use of non-fossil synthetic fuels from renewable energy sources in the entire fleet of internal combustion engine vehicles is only one promising pathway to minimize the vehicle’s carbon footprint during the use phase. The steadily tightening emissions legislation confront the developers of future combustion engines with major challenges: Historically, the chemical and physical improvement of the combustion process, tail pipe emissions reduction and the development of optimized after-treatment systems were linked to improvements in fuel quality. In order to further decrease exhaust gas emissions, the optimization of the chemical composition of renewable fuels are a basic requirement.
Technical Paper

The Influence of Fuel Composition and Renewable Fuel Components on the Emissions of a GDI Engine

2020-06-30
2020-37-0025
Investigations were performed, in which the emission behavior of renewable and conventional fuels of different composition and renewable fuel components was observed. The influence of the start of injection on the emissions at WOT was investigated. This shows how much wall and valve wetting as well as the available evaporation time affects the mixture formation of the different fuels. Further, the air fuel ratio in an operating point for catalytic converter heating, with medium engine temperatures, was varied. This shows the ability of evaporation of the fuels at engine warm-up conditions and sub-stochiometric λ-values. The studied fuels were four fuel mixtures of significantly different composition of which three were compliant with the European fuel standard EN 228. A RON 98 in-field fuel, a Euro 6 reference fuel, an Anti-Spark-Fouling (ASF) fuel (designed for minimum soot production) and a potentially completely renewable, thus CO2-neural, fuel, which is designed by Dr. Ing. h.c.
Journal Article

Sustainable Mobility Using Fuels with Pathways to Low Emissions

2020-04-14
2020-01-0345
Regulations around the globe are driving the adoption of alternative fuels and vehicles through the implementation of stricter standards aimed at reducing carbon footprint and criteria emissions such as nitrogen oxides (NOx), particulate matter (PM), and total hydrocarbon (THC) emissions. Low emission zones have been implemented across Europe which restrict access by some vehicles with the aim of improving the air quality. The Paris Agreement on climate change declared governments’ intentions to reduce greenhouse gas (GHG) emissions as outlined in each country’s nationally determined contribution. Providing affordable energy to support prosperity while reducing environmental impacts, including the risks of climate change, is the dual challenge for the energy and transport industries.
Technical Paper

Investigations of the Emissions of Fuels with different Compositions and Renewable Fuel Components in a GDI Engine

2020-04-14
2020-01-0285
Investigations were performed, in which fuels and fuel components were compared regarding gaseous as well as particulate number (PN) emissions. The focus on the selection of the fuel components was set on the possibility of renewable production, which lead to Ethanol, as the classic bio-fuel, Isopropanol, Isobutanol and methyl tert-butyl ether (MTBE). As fuels, a Euro 6 (EU6) reference fuel, an anti-spark-fouling (ASF) fuel, a European Super Plus (RON 98) in-field fuel and a potentially completely renewable fuel, which was designed by Porsche AG (named POSYN), were chosen. The composition of the fuels differs significantly which results in large differences in the exhaust gas emissions. The fuels, except ASF, are compliant with the European fuel standard EN 228.The experiments chosen were a variation of the start of injection (SOI) at different load points at a constant engine speed of 2000 rpm, amongst others.
Technical Paper

Study of Interaction of N-Methyl Aniline Octane Booster on Lubricating Oil

2018-09-10
2018-01-1809
The impact of N-Methyl Aniline (NMA) octane booster on lubricating oil has previously been studied and the main findings were reported in SAE paper 2016-01-2273. Increased sludge formation had been observed in modified ACEA black sludge testing when NMA was added to the fuel but there was very limited viscosity increase, which did not corroborate the trend evidenced on modified CEC L-109 oxidation testing where significant viscosity increase was noted when NMA was added to the oil and fuel mixture. Accordingly, modified black sludge tests have been run with and without NMA added to the oil sump at the beginning of the test to better match modified L-109 oxidation bench test conditions. Results showed the same trend in terms of viscosity increase between the modified L-109 oxidation bench test and black sludge test.
Technical Paper

Impact of Aniline Octane Booster on Lubricating Oil

2016-10-17
2016-01-2273
This paper describes the observed impact of aniline octane booster and more specifically N-Methyl Aniline (NMA) on lubricating oil, following field issues encountered in vehicles in certain areas of the world where aniline based octane booster was assumed to be used. The observed field issue was heavy sludge formation, leading to engine malfunctions. The impact of NMA on lubricating oil could first be replicated using a modified version of the CEC L-109 oxidation bench test, with oil diluted with fuel and NMA at start of test. Significant kinematic viscosity (KV100) increase at the end of test was evidenced, especially as NMA content was increased in the oil. Total base number (TBN) evaluated at end of test also showed values above fresh oil (at or above 4.5 wt% NMA) that was consistent with observations from the field. The assessment of NMA impact was then scaled up using ACEA black sludge engine test.
X