Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Probabilistic Approach to Predict Abnormal Combustion in Spark Ignition Engines

2018-09-10
2018-01-1722
This study presents a computational framework to predict the outcome of combustion process based on a given RANS initial condition by performing statistical analysis of Sankaran number, Sa, and ignition regime theory proposed by Im et al. [1]. A criterion to predict strong auto-ignition/detonation a priori is used in this study, which is based on Sankaran-Zeldovich criterion. In the context of detonation, Sa is normalized by a sound speed, and is spatially calculated for the bulk mixture with temperature and equivalence ratio stratifications. The initial conditions from previous pre-ignition simulations were used to compute the spatial Sa distribution followed by the statistics of Sa including the mean Sa, the probability density function (PDF) of Sa, and the detonation probability, PD. Sa is found to be decreased and detonation probability increased significantly with increase of temperature.
Technical Paper

Compression Ignition of Low Octane Gasoline under Partially Premixed Combustion Mode

2018-09-10
2018-01-1797
Partially premixed combustion (PPC) is an operating mode that lies between the conventional compression ignition (CI) mode and homogeneous charge compression ignition (HCCI) mode. The combustion in this mixed mode is complex as it is neither diffusion-controlled (CI mode) nor governed solely by chemical kinetics (HCCI mode). In this study, CFD simulations were performed to evaluate flame index, which distinguishes between zones having a premixed flame and non-premixed flame. Experiments performed in the optical engine supplied data to validate the model. In order to realize PPC, the start of injection (SOI) was fixed at −40 CAD (aTDC) so that a required ignition delay is created to premix air/fuel mixture. The reference operating point was selected to be with 3 bar IMEP and 1200 rpm. Naphtha with a RON of 77 and its corresponding PRF surrogate were tested. The simulations captured the general trends observed in the experiments well.
Technical Paper

Effects of Injection Rate Profiles on Auto-Ignition in Ignition Quality Tester

2018-09-10
2018-01-1695
Ignition quality tester (IQT) is a standard experimental device to determine ignition delay time of liquid fuels in a controlled environment in the absence of gas exchange. The process involves fuel injection, spray breakup, evaporation and mixing, which is followed by auto-ignition. In this study, three-dimensional computational fluid dynamics (CFD) is used for prediction of auto-ignition characteristics of diethyl ether (DEE) and ethanol. In particular, the sensitivity of the ignition behavior to different injection rate profiles is investigated. Fluctuant rate profile derived from needle lift data from experiments performs better than square rate profile in ignition delay predictions. DEE, when used with fluctuant injection rate profile resulted in faster ignition, while for ethanol the situation was reversed. The contrasting results are attributed to the difference in local mixing.
Technical Paper

A Computational Study of Lean Limit Extension of Alcohol HCCI Engines

2018-09-10
2018-01-1679
The purpose of present numerical study was to extend the operating range of alcohol (methanol and ethanol) fueled Homogeneous Charge Compression Ignition (HCCI) engine under low load conditions. Ignition of pure methanol and ethanol under HCCI mode of operation requires high intake temperatures and misfires at low loads are common in HCCI engines. Three methods have been adapted to optimize the use of methanol and ethanol for HCCI operation without increasing the intake temperature. First, blending methanol and ethanol with ignition improver, namely di-methyl ether (DME) and di-ethyl ether (DEE), was used to increase the cetane number and ignitability of premixed charge. Second, based on the blended fuels, the spark assistance was used to reduce required intake temperature for auto-ignition. Third, DME and DEE were directly injected to methanol and ethanol operated HCCI engine, in the form of Reactivity Controlled Compression Ignition (RCCI) combustion.
Technical Paper

Effect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition

2018-09-10
2018-01-1678
Stochastic pre-ignition remains one of the major barriers limiting further engine downsizing and down-speeding; two widely used strategies for improving the efficiency of spark-ignited engines. One of the most cited mechanisms thought to be responsible for pre-ignition is the ignition of a rogue droplet composed of lubricant oil and fuel. This originates during mixture formation from interactions between the fuel spray and oil on the cylinder liner. In the present study, this hypothesis is further examined using a single cylinder supercharged engine which employs a range of air-fuel mixture formation strategies. These strategies include port-fuel injection (PFI) along with side and central direct injection (DI) of an E5 gasoline (RON 97.5) using single and multiple injection events. Computational fluid dynamic (CFD) calculations are then used to explain the observed trends.
Journal Article

A Computational Study of Abnormal Combustion Characteristics in Spark Ignition Engines

2018-04-03
2018-01-0179
Super-knock that occurs in spark ignition (SI) engines is investigated using two-dimensional (2D) numerical simulations. The temperature, pressure, velocity, and mixture distributions are obtained and mapped from a top dead center (TDC) slice of full-cycle three-dimensional (3D) engine simulations. Ignition is triggered at one end of the cylinder and a hot spot of known temperature was used to initiate a pre-ignition front to study super-knock. The computational fluid dynamics code CONVERGE was used for the simulations. A minimum grid size of 25 μm was employed to capture the shock wave and detonation inside the domain. The Reynolds-averaged Navier-Stokes (RANS) method was employed to represent the turbulent flow and gas-phase combustion chemistry was represented using a reduced chemical kinetic mechanism for primary reference fuels. A multi-zone model, based on a well-stirred reactor assumption, was used to solve the reaction terms.
Technical Paper

Auto-Ignition and Spray Characteristics of n-Heptane and iso-Octane Fuels in Ignition Quality Tester

2018-04-03
2018-01-0299
Numerical simulations were conducted to systematically assess the effects of different spray models on the ignition delay predictions and compared with experimental measurements obtained at the KAUST ignition quality tester (IQT) facility. The influence of physical properties and chemical kinetics over the ignition delay time is also investigated. The IQT experiments provided the pressure traces as the main observables, which are not sufficient to obtain a detailed understanding of physical (breakup, evaporation) and chemical (reactivity) processes associated with auto-ignition. A three-dimensional computational fluid dynamics (CFD) code, CONVERGE™, was used to capture the detailed fluid/spray dynamics and chemical characteristics within the IQT configuration. The Reynolds-averaged Navier-Stokes (RANS) turbulence with multi-zone chemistry sub-models was adopted with a reduced chemical kinetic mechanism for n-heptane and iso-octane.
Technical Paper

Investigation of Premixed and Diffusion Flames in PPC and CI Combustion Modes

2018-04-03
2018-01-0899
The experimental in-cylinder combustion process was compared with the numerical simualtion for naphtha fuel under conventional compression ignition (CI) and partially premixed combustion (PPC) conditions. The start of injection timing (SOI) with the single injection strategy was changed from late of −10 CAD aTDC to early of −40 CAD aTDC. The three-dimensional full cycle engine combustion simulation was performed coupling with gas phase chemical kinetics by the CFD code CONVERGE™. The flame index was used for evaluating the combustion evolution of premixed flame and diffusion flame. The results show that the flame index could be used as an indicator for in-cylinder homogeneity evaluation. Hydroperoxyl shows a similar distribution with the premixed combustion. Formaldehyde could be used as an indicator for low temperature combustion.
Technical Paper

An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

2018-04-03
2018-01-0240
Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers.
Technical Paper

Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

2018-04-03
2018-01-0292
Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3].
Technical Paper

Computational Study of Stratified Combustion in an Optical Diesel Engine

2017-03-28
2017-01-0573
Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics provide valuable information, the high fidelity simulations with matched parametric conditions improve fundamental understanding of relevant physical and chemical processes by accessing additional observables such as the local mixture distribution, intermediate species concentrations, and detailed chemical reaction rates. Commercial software, CONVERGE™, was used as the main simulation tool, with the Reynolds averaged Navier-Stokes (RANS) turbulence model and the multi-zone (SAGE) combustion model to compute the chemical reaction terms. SOI is varied from late compression ignition (CI) to early partially premixed combustion (PPC) conditions.
Technical Paper

Effect of Timing and Location of Hotspot on Super Knock during Pre-ignition

2017-03-28
2017-01-0686
Pre-ignition in SI engine is a critical issue that needs addressing as it may lead to super knock event. It is widely accepted that pre-ignition event emanates from hot spot(s) that can be anywhere inside the combustion chamber. The location and timing of hotspot is expected to influence the knock intensity from a pre-ignition event. In this study, we study the effect of location and timing of hot spot inside the combustion chamber using numerical simulations. The simulation is performed using a three-dimensional computational fluid dynamics (CFD) code, CONVERGE™. We simulate 3-D engine geometry coupled with chemistry, turbulence and moving structures (valves, piston). G-equation model for flame tracking coupled with multi-zone model is utilized to capture auto-ignition (knock) and solve gas phase kinetics. A parametric study on the effect of hot spot timing and location inside the combustion chamber is performed.
Technical Paper

Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

2017-03-28
2017-01-0772
The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition.
Technical Paper

Experimental and Numerical Investigation of Ethanol/Diethyl Ether Mixtures in a CI Engine

2016-10-17
2016-01-2180
The auto-ignition characteristics of diethyl ether (DEE)/ethanol mixtures are investigated in compression ignition (CI) engines both numerically and experimentally. While DEE has a higher derived cetane number (DCN) of 139, ethanol exhibits poor ignition characteristics with a DCN of 8. DEE was used as an ignition promoter for the operation of ethanol in a CI engine. Mixtures of DEE and ethanol (DE), i.e., DE75 (75% DEE + 25% ethanol), DE50 (50% DEE + 50% ethanol) and DE25 (25% DEE + 75% ethanol), were tested in a CI engine. While DE75 and DE50 auto-ignited at an inlet air pressure of 1.5 bar, DE25 failed to auto-ignite even at boosted pressure of 2 bar. The peak in-cylinder pressure for diesel and DE75 were comparable, while DE50 showed reduced peak in-cylinder pressure with delayed start of combustion (SOC). Numerical simulations were conducted to study the engine combustion characteristics of DE mixture.
X