Refine Your Search

Search Results

Author:
Technical Paper

Development of a Quasi-Dimensional K-k Turbulence Model for Direct Injection Spark Ignition (DISI) Engines Based on the Formal Reduction of a 3D CFD Approach

2016-10-17
2016-01-2229
Combustion in SI engines strongly depends on in-cylinder turbulence characteristics. Turbulence by definition presents three-dimensional (3D) features; accordingly, 3D approaches are mainly used to investigate the in-cylinder flow and assist the engine design. However, SI engine architectures are becoming more and more complex and the generalization of technologies such as Variable Valve Timing (VVT) and Direct Injection (DI) considerably increases the number of degrees of freedom to deal with. In this context, the computing resources demanded by 3D CFD codes hugely increase and car manufacturers privilege system simulation approaches in the first phases of the design process. Accordingly, it is essential that the employed 0D/1D models well capture the main physics of the system and reproduce the impact that engine control parameters have on it.
X