Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Drive Control Development of Switched Reluctance Motor for Compact Electric Vehicles

2019-04-02
2019-01-0460
This paper presents innovative methods to resolve the two challenges that occur when using a switched reluctance motor (SRM) as a traction motor for a compact electric vehicle (EV). Electric vehicles (EVs) are seeing a rise in popularity today and the demand for further advancement of EV technologies will continue to grow. Induction motors and interior permanent magnet motors (IPMs) are most commonly used traction motors for EVs. In this project, we focused on the development of a switched reluctance motor (SRM) as an alternative motor for compact EVs, leveraging the following benefits of SRMs: 1) SRMs, which require no permanent magnets, have no drag torque, enabling clutchless motor applications, and 2) SRMs demonstrate high efficiency in the high-speed rotation range. In applications of SRMs as EV drivers, however, there are two challenges to be resolved. The first challenge is that SRMs have significant torque ripples due to the principle of torque generation.
Technical Paper

The Development of Direct Drive Motors for Solar Cars

2017-03-28
2017-01-1232
Solar car races are held worldwide, aiming to promote vehicles that help reduce environmental loads on the roads. In order to gain superiority in solar car racing, it is essential to develop a high efficiency brushless direct drive motor that optimizes the energy use to the fullest and allows high speed driving when needed. To achieve these goals, two development approaches of solar car motors are proposed: the high efficiency motor which improves electrical characteristics and significantly reduces energy loss; and the variable field magnet motor that offers instant speed boost for a temporary period of time for overtaking opponents. We have developed a high efficiency motor through the application of an amorphous core and laminated magnets. Instead of the standard method of the W-EDM (Wire-Electric Discharge Machining) for amorphous cores, we utilized water jet cutting, through which we succeeded in achieving insulation between laminated cores.
X