Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

A Study of Knocking in a Lean Mixture Using an Optically Accessible Engine

2016-11-08
2016-32-0002
Improving the thermal efficiency of internal combustion engines requires operation under a lean combustion regime and a higher compression ratio, which means that the causes of autoignition and pressure oscillations in this operating region must be made clear. However, there is limited knowledge of autoignition behavior under lean combustion conditions. Therefore, in this study, experiments were conducted in which the ignition timing and intake air temperature (scavenging temperature) of a 2-stroke optically accessible test engine were varied to induce autoignition under a variety of conditions. The test fuel used was a primary reference fuel with an octane rating of 90. The results revealed that advancing the ignition timing under lean combustion conditions also advanced the autoignition timing, though strong pressure oscillations on the other hand tended not to occur.
Technical Paper

Influence of EGR on Knocking in an HCCI Engine Using an Optically Accessible Engine

2016-11-08
2016-32-0012
This study was conducted to investigate the influence of cooled recirculated exhaust gas (EGR) on abnormal combustion in a Homogenous Charge Compression Ignition (HCCI) engine. The condition of abnormal HCCI combustion accompanied by cylinder pressure oscillations was photographed with a high-speed camera using a 2-stroke optically accessible engine that enabled visualization of the entire bore area. Exhaust gas was cooled with a water-cooled intercooler for introducing cooled EGR. Experiments were conducted in which the quantity of cooled EGR introduced was varied and a comparison was made of the autoignition behavior obtained under each condition in order to investigate the influence of cooled EGR on abnormal HCCI combustion. The results revealed that cylinder pressure oscillations were reduced when cooled EGR was introduced. That reduction was found to be mainly ascribable to the effect of cooled EGR on changing the ignition timing.
X