Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Development of High-Performance 25 cm3 Two-Stroke SI Engine for Light Weight Arborist-Chainsaw

2016-11-08
2016-32-0049
A new air-cooled SI two-stroke gasoline engine has been developed for an arborist-chainsaw. This engine has a displacement of 25 cm3 and generates about 1.1 kW and complies with the latest CARB and EPA exhaust regulations by optimizing scavenging flows and the use of a catalytic converter. Characteristics of lightweight, compact and high power-to-weight ratio are required for handheld chainsaws, especially for arborist chainsaws. As a matter of course, these characteristics are needed for engine itself in order to satisfy such market requirements for hand-held power equipment. To realize lightweight and compact design, the placement of catalytic converter is optimized for the engine and a two-piece crankshaft is adopted.
Technical Paper

A Study of the Mechanism of High-Speed Knocking in a Two-Stroke SI Engine with High Compression Ratio

2023-10-24
2023-01-1824
Experimental methods and numerical analysis were used to investigate the mechanism of high-speed knocking that occurs in small two-stroke engines. The multi-ion probe method was used in the experiments to visualize flame propagation in the cylinder. The flame was detected by 14 ion probes grounded in the end gas region. A histogram was made of the order in which flames were detected. The characteristics of combustion in the cylinder were clarified by comparing warming up and after warming up and by extracting the features of the cycle in which knocking occurred. As a result, regions of fast flame propagation and regions prone to auto-ignition were identified. In the numerical analysis, flow and residual gas distribution in the cylinder, flame propagation and self-ignition were visualized by 3D CFD using 1D CFD calculation results as boundary conditions and initial conditions.
X