Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Body-in-White Reinforcements for Light-Weight Automobiles

2016-04-05
2016-01-0399
Automotive OEMs are proactively working on vehicle light-weighting, powertrain optimization, alternate/renewable energy sources and combinations of the three to meet challenging corporate average fuel economy (CAFE) standards. Light-weighting of the body-in-white (BIW) is an obvious choice for vehicle light-weighting as this structure contributes to more than 30-35% of the total weight of a car. Changing manufacturing and assembly lines requires substantial investment. As such, OEMs are exploring short-term light-weighting strategies that do not require any major changes to the BIW. Local reinforcement for the BIW are pertinent solutions that does not require any major changes in the existing assembly lines. This paper focuses on the development of BIW reinforcement solutions using engineering thermoplastic materials that can be mounted at appropriate locations on a vehicle’s BIW to achieve significant weight savings without compromising crash performance.
Technical Paper

Small Overlap Impact Countermeasures for Automobiles

2015-04-14
2015-01-1491
Automotive OEMs, insurance agencies and regulatory bodies are continuously looking at various accident statistics and proper ways of evaluating unaccounted (as per current regulations and safety ratings) accident scenarios to improve the safety standards of cars. Small overlap and oblique impacts during which a corner of a car hits a tree or the corner of another vehicle are two such situations. Most of the vehicles that are on road scored low when tested for these impact scenarios. This paper focuses on development of energy-absorbing members, using engineering thermoplastics materials, which can be mounted on the BIW of a vehicle, as countermeasures to small overlap impact. Various design and material configurations options, including metal plastic and composite plastic structural members mounted on the BIW are evaluated through CAE studies, against small overlap/oblique impact scenarios.
Technical Paper

Monolithic, Lightweight, and Pedestrian-Safe Thermoplastic Energy-Absorbing System for Automobiles

2015-01-14
2015-26-0168
With a significant increase in awareness of safety and sustainability among the automobile original equipment manufacturers and end users, every car manufacturer is looking for lightweight, safe and cost-effective solutions for every unit present in their vehicle. The latter gets much more focus in developing countries, where the automobile market is extremely cost sensitive. Further, with implementation of the proposed global technical regulations on pedestrian safety in the near future and low-speed vehicle damageability requirements, demand for a low-cost, lighter and safer bumper system is ever increasing. This paper focuses on development of a unique thermoplastic energy-absorbing device for vehicle bumpers. Conventionally, major energy absorbing members of these bumper systems consist of three separate pieces: energy absorber, bumper beam and crash cans. A hybrid approach based on logical reasoning and topology optimization is used to conceive the design.
Technical Paper

Design of Light-Weight Vehicle Front End Structure for Pedestrian Protection

2012-04-16
2012-01-1176
With a significant increase in awareness of sustainability and increased interest towards low-cost solutions, every automobile manufacturer is looking for light-weight, safer and modularized solutions for many systems involved in the vehicle. Weightage for these three factors can vary depending on the location and functionality of the system. Front end system of a vehicle is a typical example, where all the three factors assume equal importance. The system consists of a front end module (FEM) mounted with an energy-absorbing system designed to meet pedestrian safety requirements. The focus of this paper is to develop a methodology for the design of thermoplastic light-weight pedestrian-safe front end structure.
Technical Paper

Thermoplastic Rear Bumper Beams for Automobile Low-Speed Rear Impact

2011-04-12
2011-01-0544
High repair cost and the subsequent increase in insurance cost in a highly competitive automobile market have forced every automobile original equipment manufacturer (OEM) to comply with the FMVSS and ECE-42 regulatory requirements of low-speed vehicle damageability. Although, the terminologies used are different, similar regulatory requirements also exist in Asia-pacific region. At the rear side, reducing the damage to expensive vehicle components in a low-speed pendulum impact or a low-speed barrier impact can attain a good rating for low-speed vehicle damageability. This paper focuses on a detailed study of various lightweight plastic rear beam designs and their effectiveness in reducing the damage to the vehicle during low-speed vehicle-to-vehicle collision or vehicle to barrier collision.
Technical Paper

Diagnosing Vehicle Aggressiveness for Pedestrian Leg Impact and Development of Efficient Front End Energy Management Systems

2010-04-12
2010-01-1168
Worldwide involvement in Global Technical Regulation (GTR) discussion shows the increasing importance of pedestrian safety as a global concern. Vehicle front styling plays an important role in vehicle to pedestrian impact. Front styling can change the pedestrian kinematics and injury levels during an impact. Key elements of bumper front are Fascia, Upper & Lower Grille, Hood, spoiler or undertray, bumper beam and height of these components from ground level, determine the vehicle aggressiveness for pedestrian safety. This paper presents an approach to diagnose the vehicle front aggressiveness for pedestrian leg impact. Eight different vehicle bumper front configurations from ‘minis’ to ‘sedans’ are studied for lower leg impact cases, to understand the bumper stiffness profile (stiffness in upper, middle and lower load path).
X