Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Optimization of the Lubrication Distribution in Multi Plate Wet-Clutches for HVT Transmissions: An Experimental - Numerical Approach

2018-09-10
2018-01-1822
The paper investigates the lubrication flow within multi plate wet-clutches for hydro-mechanical variable transmissions in order to optimize the oil distribution and to reduce the thermo-mechanical stresses on the plates. Since experimental measurements are very difficult to carry out on a real system, CFD numerical tools are used for predicting the flow distribution in a real geometry under actual operating conditions. A modular approach is adopted for the domain subdivision in order to represent accurately the three dimensional geometrical features, while the volume of fluid approach is used to model the multi-phase flow that characterizes the component. Poor lubrication is predicted where high thermal stresses were observed during tests. Furthermore, the numerical modeling is validated against measurements carried out on an ad-hoc designed test rig, which adopts transparent PMMA and 3D-printed inserts for the flow investigation.
Journal Article

Dynamic Analysis of the Lubrication in a Wet Clutch of a Hydromechanical Variable Transmission

2016-09-27
2016-01-8099
The paper investigates the oil flow through a multi plate clutch for a hydro-mechanical variable transmission under actual operating conditions. The analysis focuses on the numerical approach for the accurate prediction of the transient behavior of the lubrication in the gear region: the trade-off between prediction capabilities of the numerical model and computational effort is addressed. The numerical simulation includes the full 3D geometry of the clutch and the VOF multi-phase approach is used to calculate the oil distribution in the clutch region under different relative rotating velocities. Furthermore, the lubrication of the friction disks is calculated for different clutch actuation conditions, i.e. not-engaged and engaged positions. The influence of different geometrical features of the clutch lubricating circuit on the oil distribution is also determined.
X