Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Front Bumper Dive During Maximum Braking of ABS-Equipped Vehicles

2024-04-09
2024-01-2469
Passenger vehicle bumpers are designed to reduce collision damage. If colliding bumpers are not vertically aligned, their effectiveness is reduced and the resulting damage increases. Two bumpers of similar static design heights may become misaligned due to bumper dive caused by one or both vehicles pitching forward due to braking. Previous researchers have quantified bumper dive and how it changed with passenger vehicle designs. Currently there are limited data available to quantify the mean, variance, and distribution of bumper dive for modern ABS-equipped vehicles. We conducted maximum braking tests using 3 late-model minivans/CUVs (crossover utility vehicles) and 9 late-model sedans on contiguous dry asphalt and concrete road surfaces. Between 16 and 23 tests were conducted for each vehicle and all tests were conducted from an initial speed of about 65 km/h (40 mph). A laser distance sensor mounted to the front bumpers measured bumper height throughout each test.
Technical Paper

Using Adjusted Force-Displacement Data to Predict the EBS of Car into Barrier Impacts

2019-04-02
2019-01-0425
Our goal was to evaluate whether modifications to the force-displacement curves derived from a high-speed NHTSA frontal barrier test could be used to improve predictions of the equivalent barrier speed of a low-speed crash involving the same vehicle. Using an earlier iteration of the technique described here, Hunter et al. [2] showed that the F-D curves from higher-speed tests over-predicted the EBS of lower-speed tests by 21±17%. After modifying the earlier technique to account for powertrain stack-up and barrier force attenuation prior to reaching peak dynamic crush, the technique evaluated here reduced this error to 1% with a standard deviation that varied between ±9% and ±13% depending on which engine accelerometers were chosen for the adjustment. These findings suggest that the method and modifications proposed here can be used to reconstruct car crashes provided that there is a relationship between dynamic crush and residual crush.
Technical Paper

Finite Element Analysis to Analyze the Properties of Pole Impacts

2018-04-03
2018-01-0519
The objectives of this study were to use Finite Element (FE) simulations to predict the crush profile resulting from frontal pole impacts and to compare the results of the FE simulations to existing reconstruction methods. A 2001 Ford Taurus FE model created by the National Crash Analysis Center (NCAC) was used to simulate four pole impact tests performed by the Insurance Institute of Highway Safety (IIHS) involving the same generation of Ford Taurus. The FE crush profiles show good correlation to the physical tests. The maximum crush was predicted within ±3% for three of the tests and was under predicted by 7% in the fourth test. The same FE model was then used to simulate 22 more pole impacts to study how impact speed and lateral pole offset from the centerline affected maximum crush. At impact speeds of 32 km/h, the maximum crush did not vary by more than 4 cm for different pole locations ±500 mm from the vehicle centerline.
X