Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Design Analysis & Parametric Optimization of Gerotor Oil Pump for Improving Volumetric Efficiency

2016-02-01
2016-28-0113
This work is an effort to find the parallelism between the volumetric efficiency of a Gerotor, and its inherent design parameters: number of teeth, tooth profile, outer dimensions of diameter and thickness, and the input power (torque and speed). The preliminary relations are derived from the software simulation of a range of Gerotor models with varying aforementioned parameters. These results are augmented by a previously proposed method of theoretically estimating the displacement of a Gerotor. Then, these results are validated and revised by practical results from three different Gerotors with epitrochoidal and its conjugate profiles, which are used in automotive applications like engines and transmissions. These relations can be used for choosing parameters yielding the maximum efficiency in specific environments: the packaging space, the input available, and the output required.
Technical Paper

Finite Element Simulation and Validation of Planetary Gear System

2018-07-09
2018-28-0027
The planetary gear system is a critical component in speed reduction of gear system. It consists of a ring gear, set of planetary gears, a sun gear and a carrier. It is mainly used in high speed reduction transmission. More speed variation can be achieved using this system with same number of gears. This speed reduction is based on the number of teeth in each gear. The size of new system is compact. A theoretical calculation is performed at concept level to get the desired reduction of speed. Then the planetary gear system is simulated using ANSYS software for new development transmission system. The final validation is done with the testing of physical parts. This concept is implemented in 9speed transmission system. Similar concept is in development for the hub reduction with planetary gears. The maximum 3.67 reduction is achieved with planetary system. The stresses in each pin is calculated using FEA.
X