Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Experimental Study on the Relationship between Combustion and Vibration in a Gasoline Engine Part 2 Characteristics of Structure’s Exciting Force and Overall Research Summary

2023-05-08
2023-01-1146
Following Part 1 of the previous study, this paper reports the structure’s exciting force and summarize the overall research results. An experimental study was conducted to clarify the relationship between engine combustion and vibration, and to establish technology to suppress it. This study focused on the vehicle interior noise caused by combustion in which vibration transmission is the main component at high speed and high load region. A phenomenon in which both the combustion’s exciting force and the structure’s exciting force are combined is defined as vehicle interior noise caused by combustion. Conventionally, combustion and vibration are often discussed in terms of the average cycle, but considering the nonstationary property of vibration, in this paper analyzed the structure’s exciting force characteristics for vibration in cycle-by-cycle. Analysis was conducted using the combustion indicators clarified in the previous study.
Technical Paper

Experimental Study on the Relationship between Combustion and Vibration in a Gasoline Engine Part1 Study Overview and the Characteristics of Combustion’s Exciting Force

2023-04-11
2023-01-0430
This study focused on the vehicle interior noise caused by combustion in which vibration transmission is the main component at high speed and high load region. A phenomenon in which both the combustion’s exciting force and the structure’s exciting force are combined is defined as vehicle interior noise caused by combustion. Conventionally, combustion and vibration are often discussed in terms of the average cycle, but considering the nonstationary property of vibration, in this paper analyzed the combustion characteristics for cycle-by-cycle and investigated indicators for the combustion’s exciting force. The engine vibration is affected by heat release characteristics even with the same engine structure specifications. The heat release characteristics were determined as indicators for the combustion’s exciting force. Transfer Path Analysis (TPA) revealed that there is piston transmission in the target frequency band.
Journal Article

Understanding the Fundamentals of Boxer Engine Behavior on Sound Quality

2016-06-15
2016-01-1766
An engine configuration has a significant influence on the sound quality from the powertrain. Whilst the fundamental order content can be readily apparent from the firing order over the engine, or bank of a V engine, some characteristics and how the engine design can influence them requires some more specific investigation. Understanding, on a fundamental level, the aspects of the engine design which influence these characteristics is critical to allow more detailed analysis and development work to be focused appropriately. The configuration of a Boxer engine gives a distinctive sound characteristic producing a unique sound compared to an In-Line configuration. Depending on the application it may be desirable to enhance or subdue some of these characteristics.
Journal Article

Piston Design for Optimizing Trade-off of Friction and NVH

2016-06-15
2016-01-1855
Requirements for reducing powertrain NVH drives the selection of low piston skirt to liner clearances contradicting the requirement to maintain larger skirt clearances for minimizing engine friction. Whilst this clearance trade-off between low friction and low NVH is fundamental, piston design features have a significant effect on where the trade-off curve sits on the friction/NVH map. Design features can therefore be viewed not by either friction or NVH improvement measures but a shift in the friction-NVH trade off curve. Specifically, some piston design features which may be targeted at reducing friction can be viewed as either a friction benefit for similar NVH or an NVH improvement for similar friction levels. The ability to realistically quantify the effect of the design changes on NVH is therefore critical to determining what design changes to recommend, the direction of the piston design being highly sensitive to the process by which the impact on NVH is assessed.
Technical Paper

Advanced Analysis Techniques for NVH and Sound Quality Improvement

2016-06-15
2016-01-1787
A robust analytical process for evaluating the effects of engine component design on the powertrain NVH has been developed. The work presented focuses on design modifications for refinement of the NVH levels and sound quality of a 4 cylinder Boxer engine with automatic transmission. Assessment focuses on the powertrain structure, cranktrain, torque converter and valvetrain. Comparison of predicted mount vibrations with measurements on a fired engine are made. Through detailed post-processing of the analysis results, looking at modal contributions, modal excitations and loading contributions, the causes and contributions to the NVH are understood and used to direct potential modifications to the powertrain and component design. The models are used to quantify the relative benefit of these modifications in terms of both overall vibration levels and sound quality through implementation of a rumble metric.
X