Refine Your Search

Search Results

Author:
Journal Article

The Role of Nonlinearity and Uncertainty in Assessing Disc Brake Squeal Propensity

2016-06-15
2016-01-1777
Despite significant progress made in the past 20 years in discovering some of the mechanisms of brake squeal, it remains difficult to predict the underlying friction-induced instabilities reliably. Most numerical analyses are based on linear deterministic analyses of structural vibrations such as the complex eigenvalue analysis (CEA). However, nonlinear multi-scale processes govern friction contact with high sensitivities to operating and/or environmental conditions. In addition, uncertainties in the material properties and boundary conditions such as contact and friction laws are rarely considered. Hence, it is quite common to underpredict or overpredict the number of instabilities and extensive brake noise dynamometer tests are still required in industry to ensure acceptable brake noise performance. In this paper, simplified finite element brake models are used to illustrate the role of nonlinearity in brake squeal.
X