Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Impacts of Biofuel Blending on MCCI Ignition Delay with Review of Methods for Defining Cycle-by-Cycle Ignition Points from Noisy Cylinder Pressure Data

2021-04-06
2021-01-0497
Conventional diesel combustion, also known as Mixing-Controlled Compression Ignition (MCCI), is expected to be the primary power source for medium- and heavy-duty vehicles for decades to come. Displacing petroleum-based ultra-low-sulfur diesel (ULSD) as much as possible with low-net-carbon biofuels will become necessary to help mitigate effects on climate change. Neat biofuels may have difficulty meeting current diesel fuel standards but blends of 30% biofuel in ULSD show potential as ‘drop-in’ fuels. These blends must not make significant changes to the combustion phasing of the MCCI process if they are to be used interchangeably with neat ULSD. An important aspect of MCCI phasing is the ignition delay (ID), i.e. the time between the start of fuel injection and the initial premixed autoignition that initiates the MCCI process.
Technical Paper

Fuel Property Effects of a Broad Range of Potential Biofuels on Mixing Control Compression Ignition Engine Performance and Emissions

2021-04-06
2021-01-0505
Conventional diesel engines will continue to hold a vital role in the heavy- and medium-duty markets for the transportation of goods along with many other uses. The ability to offset traditional diesel fuels with low-net-carbon biofuels could have a significant impact on reducing the carbon footprint of these vehicles. A prior study screened several hundred candidate biofuel blendstocks based on required diesel blendstock properties and identified 12 as the most promising. Eight representative biofuel blendstocks were blended at a 30% volumetric concentration with EPA certification ultra-low-sulfur diesel (ULSD) and were investigated for emissions and fuel efficiency performance. This study used a single cylinder engine (based on the Ford 6.7L engine) using Conventional Diesel Combustion (CDC), also known as Mixing Control Compression Ignition (MCCI). The density, cetane number, distillation curve and sooting tendency (using the yield sooting index method) of the fuels were measured.
Journal Article

Intermediate Combustion Modes between Conventional Diesel and RCCI

2018-04-03
2018-01-0249
In recent years, several unconventional fueling modes have been developed for dual-fuel compression ignition (CI) engines. One such mode is reactivity controlled compression ignition (RCCI), which utilizes both a low-reactivity fuel (LRF) and a high-reactivity fuel (HRF) via separate injection systems. RCCI has been tested with many fuels, but there have been relatively few tests on the intermediate modes that exist in between RCCI and conventional diesel combustion (CDC). For this purpose, a quantitative classification system of fueling modes was created and used to test incremental changes in the fueling mode of a 1.9L General Motors (GM) turbodiesel engine, shifting between CDC and RCCI at a single speed/load point. This engine used a 5:2 mass ratio blend of propane and dimethyl ether (DME) as its LRF and ultra-low-sulfur diesel (ULSD) as its HRF.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Experimental Study of Post Injection Scheduling for Soot Reduction in a Light-Duty Turbodiesel Engine

2016-04-05
2016-01-0726
This experimental study involves optimization of the scheduling of diesel post injections to reduce soot emissions from a light-duty diesel engine. Previous work has shown that certain post injection schedules can reduce engine-out soot emissions when compared to conventional injection schedules for the same engine load. The purpose of this study is to investigate the impact of post injection scheduling for a range of engine conditions on a light duty multicylinder turbodiesel engine (1.9L GM ZDTH). For each engine operating condition, a test grid was developed so that only two variables (post injection duration and the commanded dwell time between main injection and post injection) were varied, with all other conditions held constant, in order to isolate the effects of the post injection schedule. Results have identified two distinct regimes of post injection schedules that reduce soot emissions.
X