Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Aerodynamic Performance of Flat-Panel Boat-Tails and Their Interactive Benefits with Side-Skirts

2016-09-27
2016-01-8015
This paper describes an investigation of the performance potential of conventional flat-panel boat-tail concepts applied to tractor-trailer combinations. The study makes use of data from two wind-tunnel investigations, using model scales of 10% and 30%. Variations in boat-tail geometry were evaluated including the influence of length, side-panel angle and shape, top-panel angle and vertical position, and the presence of a lower panel. In addition, the beneficial interaction of the aerodynamic influence of boat-tails and side-skirts that provides a larger drag reduction than the sum of the individual-component drag reductions, identified in recent years through wind-tunnel tests in different facilities, has been further confirmed. This confirmation was accomplished using combinations of various boat-tails and side-skirts, with additional variations in the configuration of the tractor-trailer configuration.
Journal Article

Simulation of Atmospheric Turbulence for Wind-Tunnel Tests on Full-Scale Light-Duty Vehicles

2016-04-05
2016-01-1583
During the past year, a novel turbulence generation system has been commissioned in the National Research Council (NRC) 9 m Wind Tunnel. This system, called the Road Turbulence System was developed to simulate with high fidelity the turbulence experienced by a heavy duty vehicle on the road at a geometrical scale of 30%. The turbulence characteristics that it can simulate were defined based on an extensive field measurement campaign on Canadian roads for various conditions (heavy and light traffic, topography, exposure) at heights above ground relevant not only for heavy duty vehicles but also for light duty vehicles. In an effort to improve continually the simulation of the road conditions for aerodynamic evaluations of ground vehicles, a study was carried out at NRC to define the applicability of the Road Turbulence System to aerodynamic testing of full-scale light duty vehicles.
X