Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

The use of machine learning algorithms in the simulation of multi-layer acoustic palliatives.

2024-06-12
2024-01-2928
Acoustic palliatives used in the automotive industry have evolved from simple felt and heavy layer combinations into highly complex formulations and combinations to account for higher performance targets, lower weight and inevitably cost constraints. Achieving Customer performance compliance usually involves a time-consuming exercise of material characterisation and measurement. Ideally this should be carried out via simulation, but as material mixtures and compositions become more complex, the ability to accurately simulate their acoustic performance is becoming increasingly difficult. Historically, Biot parameters and their associated TMM models have been used to simulate the acoustic performance of multi-layer material compositions. However, these simulations are not able to account for real-world complexities such as manufacturing imperfections or inter-layer gluing effects.
Technical Paper

Polyurethane Decoupling Foam with Variable Stiffness and Thickness: Insulation Performance versus Their Mechanical and Transport Properties

2022-06-15
2022-01-0957
Polyurethane foam (PU foam) is widely used in automotive noise reduction palliatives. As a decoupling insulator its acoustic performance depends on intrinsic properties, called “Biot” parameters. An important decoupling parameter is the apparent stiffness of the PU foam cell structure, as this controls the transportation of vibrational energy, with “softer PU foam” being the preferred option. However, some areas of application, for example in automotive carpet design, requires stiffer PU foam in order to accommodate under foot comfort. For a comprehensive approach to automotive component design, it is necessary to calculate the appropriate spatial PU foam properties ideally without the need for series of prototypes. This paper describes the methods and processes used when compiling and validating a material database capable of predicting the acoustic performance of flat sample or spatially complex 3D component with minimal prototype manufacture.
Technical Paper

Inter-Laboratory Characterization of Biot Parameters of Poro-Elastic Materials for Automotive Applications

2020-09-30
2020-01-1523
Automotive suppliers provide multi-layer trims mainly made of porous materials. They have a real expertise on the characterization and the modeling of poro-elastic materials. A dozen parameters are used to characterize the acoustical and elastical behavior of such materials. The recent vibro-acoustic simulation tools enable to take into account this type of material but require the Biot parameters as input. Several characterization methods exist and the question of reproducibility and confidence in the parameters arises. A Round Robin test was conducted on three poro-elastic material with four laboratories. Compared to other Round Robin test on the characterization of acoustical and elastical parameters of porous material, this one is more specific since the four laboratories are familiar with automotive applications. Methods and results are compared and discussed in this work.
Technical Paper

An Overview of Microstructural Approaches for Modelling and Improving Sound Proofing Properties of Cellular Foams: Developments and Prospects

2018-06-13
2018-01-1564
Significant advances have been made over the last 15 years in the field of modelling the acoustic properties of foams from the description of their microstructures. It entails a multidisciplinary work at the junction between physico-chemistry and mechanics of porous media, which involves a dialogue between different disciplines and requires the joint development of several techniques (imaging, upscaling, numerical computations, and experimental identification). It seems to be of timely interest to take stock of the methodological developments that have provided guidance on how to manufacture the new generation of foams with enhanced properties and to identify possible future methodological developments.
Technical Paper

Carpet Hybrid Foam Spacer: An Ultra-Absorbing Lightweight Floor Insulator

2016-06-15
2016-01-1851
The noise treatments weight reduction strategy, which consists in combining broadband absorption and insulation acoustic properties in order to reduce the weight of barriers, depends strongly on surface to volume ratio of the absorbing layers in the reception cavity. Indeed, lightweight technologies like the now classical Absorber /Barrier /Absorber layup are extremely efficient behind the Instrument Panel of a vehicle, but most of the time disappointing when applied as floor insulator behind the carpet. This work aims at showing that a minimum of 20 mm equivalent “shoddy” standard cotton felt absorption is requested for a floor carpet insulator, in order to be able to reduce the weight of barriers. This means that a pure absorbing system that would destroy completely the insulation properties and slopes can only work, if the noise sources are extremely low in this specific area, which is seldom the case even at the rear footwells location.
X