Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Efficient Prediction of Flow-Induced Sound Sources and Emission from a HVAC Blower

2018-06-13
2018-01-1518
A shortcoming of widely-used integral methods for prediction of flow-induced sound emission of rotating systems is that the rotation of the impeller can be included in the calculation, but not reflections of sound from the housing, rotor blades and attached ducts. This paper introduces a finite element method that correctly maps both the sound sources rotating with the impeller and the reflections of the sound from the rigid surfaces of the components of the blower. For the prediction of flow-induced sound a hybrid approach is employed using separate CFD and acoustic simulations. It is based on a decomposition of flow (incompressible part) and acoustic (compressible part) quantities and is applicable to high-Reynolds-number and low-Mach-number flows. It features only a scalar unknown (i.e. the acoustic velocity potential), thus reducing the computational effort significantly.
Technical Paper

A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan

2016-06-15
2016-01-1249
A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
Technical Paper

A Benchmark Case for Aerodynamics and Aeroacoustics of a Low Pressure Axial Fan

2016-06-15
2016-01-1805
A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
X