Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Analytical and Experimental Studies of Electric Motor NVH Design Focusing on Torque Ripple and Radial Force

2022-03-29
2022-01-0311
Electric motor whine is one of the main noise sources of hybrid and electric vehicles. This paper describes a comprehensive analytical and experimental investigation of permanent magnetic electric motor NVH designs focusing on the contribution from torque ripple (TR) and radial forces (RF). A design-of-experiment method is adopted to design and build candidate motors with (i) high TR and high RF; (ii) high TR and low RF; (iii) low TR and high RF and (iv) low TR and low RF. Four prototype motors are built and tested on motor fixtures to measure dynamic stator forces in radial, tangential and axial directions, track dominant motor orders, and estimate motor Operational Deflection Shapes (ODS). Finite-element based electromagnetic and NVH analyses are performed and correlated to test data. Both tests and analyses confirm reducing TR and RF improves motor NVH performance at dominant pole pass orders.
Journal Article

Electric Motor Design of General Motors’ Chevrolet Bolt Electric Vehicle

2016-04-05
2016-01-1228
A permanent magnet synchronous motor (PMSM) motor is used to design the propulsion system of GM’s Chevrolet Bolt battery electric vehicle (BEV). Magnets are buried inside the rotor in two layer ‘V’ arrangement. The Chevrolet Bolt BEV electric machine rotor design optimizes the magnet placement between the adjacent poles asymmetrically to lower torque ripple and radial force. Similar to Chevrolet Spark BEV electric motor, a pair of small slots are stamped in each rotor pole near the rotor outer surface to lower torque ripple and radial force. Rotor design optimizes the placement of these slots at different locations in adjacent poles providing further reduction in torque ripple and radial force. As a result of all these design features, the Chevrolet Bolt BEV electric motor is able to meet the GM stringent noise and vibration requirements without implementing rotor skew, which (rotor skew) lowers motor performance and adds complexity to the rotor manufacturing and hence is undesirable.
Journal Article

Design of the Chevrolet Bolt EV Propulsion System

2016-04-05
2016-01-1153
Building on the experience of the Chevrolet Spark EV battery electric vehicle, General Motors (GM) has developed a propulsion system with increased capability for its next generation Chevrolet Bolt EV. It propels a new larger electric vehicle with significantly greater electric driving range. Through extensive analysis the primary propulsion system components, which include the drive unit, traction electric motor, power electronics, energy storage, and on-board charging module, were optimized individually and as an integrated system to deliver improvements in propulsion system energy, power, torque and efficiency. The results deliver outstanding EV range and fun-to-drive acceleration performance.
X