Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Development of Continuously Variable Discharge Oil Pump

2018-04-03
2018-01-0932
Recently, for the protection of the environment, the regulation of automobile fuel consumption and exhaust gas emission has been strengthened. To improve fuel economy, it is demanded that each engine part contributes to reducing the workload of the engine, even the engine lubrication oil pump. In response to this, a new variable discharge oil pump was developed. It is the world's first internal gear type oil pump that has electronically controlled continuously variable discharge. The work performed by the pump chiefly takes two forms: sliding friction of the rotor and pumping work which moves the oil. First, in developing a variable discharge oil pump, a new tooth profile of the rotor was developed to reduce its sliding friction. As a result, the sliding friction of the rotor was reduced by 34% while maintaining the same theoretical oil discharge rate. Next, a variable discharge mechanism using an internal gear was developed.
Technical Paper

Technology to Balance Discharge Pressure Characteristics with Hydraulic Vibration Control for a Variable Discharge Oil Pump

2016-04-05
2016-01-1348
1 There are two design challenges of the flow path switching valve in a three-stage variable discharge oil pump. The first is to obtain the required discharge pressure characteristics and the other is to prevent hydraulic vibration. Therefore, we established technologies to determine the shape of the valve and the valve housing that resolve these two challenges. The technology to obtain the required discharge pressure characteristics solves equations that are statically true, such as the equations for the equilibrium of forces and hydraulic orifice. The hydraulic vibration control technology derives a differential equation that takes transient behavior, including oil elasticity and inertia, into account first. Then, the derived equations are converted to a transfer function that indicates the valve behavior according to the input of oil pressure changes. And then the stability criterion is applied to judge whether hydraulic vibration occurs or not.
X