Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Structural Diffuse Field Excitation Synthesis by Synthetic Array (SFS-SA), Application to Cars Panels Contributions

2020-09-30
2020-01-1522
Diffuse field or turbulent boundary layer excitations of vehicles are of huge interest in automotive industry. For such excitations reverberation chambers or wind tunnels are necessary, this means high cost experiments. The idea of sound field synthesis to create the acoustic effect corresponding to diffuse field or turbulent boundary layer excitation, is of major interest to reduce drastically the cost of experiments. Originally, techniques based on loudspeakers antenna were used, however, a major difficulty appeared due to driving simultaneously a huge number of sources. To avoid this difficulty a new technique based on synthetic antenna is used here; instead of an array of loudspeakers, just one source is used for scanning the surface where the acoustic field excite the structure. A post processing step, based on plane wave decomposition, is then applied to collected experimental data in order to get the response of the structure or the sound transmission through the structure.
Technical Paper

Inverse Characterization of Vibro-Acoustic Subsystems for Impedance-Based Substructuring Approaches

2020-09-30
2020-01-1582
Substructuring approaches are helpful methods to solve and understand vibro-acoustic problems involving systems as complex as a vehicle. In that case, the whole system is split into smaller, simpler to solve, subsystems. Substructuring approaches allow mixing different modeling “solvers” (closed form solutions, numerical simulations or experiments). This permits to reach higher frequencies or to solve bigger systems. Finally, one of the most interesting features of substructuring approaches is the possibility to combine numerical and experimental descriptions of subsystems. The latter point is particularly interesting when dealing with subdomains that remain difficult to model with numerical tools (assembly, trim, sandwich panels, porous materials, etc.). The Patch Transfer Functions (PTF) method is one of these substructuring approaches. It condenses information (impedance matrix) of subsystems on their coupling surfaces.
Journal Article

Coarse Mesh RIFF Method to Identify the Homogenized Flexural and Shear Complex Moduli of Composite Beams

2020-09-30
2020-01-1579
This paper aims at identifying the flexural and shear complex moduli of a sandwich beam by simply measuring the displacement field and applying an inverse resolution of the Timoshenko beam problem. A first development [1] employed the RIFF technique (from the french "Resolution Inverse Filtrée Fenêtrée") [2]. This article presents an improvement, using the RIC method ("Résolution Inverse Corrigée" in french) that involves a correction of the finite difference scheme as originally suggested in [3]. By applying this method specifically to the Timoshenko beam problem [4], one can asses the viscoelastic parameters of composite beams, based on a coarse mesh measurement of the displacement field using a simple accelerometer and an instrumented hammer. An experimental validation conducted on a sandwich honeycomb beam with fibreglass faces allows satisfactory identifications despite a low spatial resolution (down to 2.1 samples per wavelength).
Technical Paper

SmEdA Vibro-Acoustic Modeling of a Trimmed Truck Cab in the Mid-Frequency Range

2018-06-13
2018-01-1506
The City Lightweight and Innovative Cab (CLIC) project was a scientific collaboration gathering public and private organizations. The aim was to propose an innovative lighten truck cab, where a high strength steel was used. As long as it could affect directly the acoustic environment of the cab, it was necessary to be able to simulate the vibroacoustic behavior of the truck cab in the mid frequency range. The dissipative treatments used for noise and vibration control such as viscoelastic patches and acoustic absorbing materials must then be taken into account in the problem. A process based on the SmEdA (Statistical modal Energy distribution Analysis) method was developed and is presented in this paper. SmEdA allows us substructuring the global problem, to study the interaction between the floor and the interior cavity.
Journal Article

Source Separations and Identification by Structural Holography

2016-06-15
2016-01-1799
The source field reconstruction aims at identifying the excitation field measuring the response of the system. In Near-field Acoustic Holography, the response of the system (the radiated acoustic pressure) is measured on a hologram using a microphones array and the source field (the acoustic velocity field) is reconstructed with a back-propagation technique performed in the wave number domain. The objective of the present works is to use such a technique to reconstruct displacement field on the whole surface of a plate by measuring vibrations on a one-dimensional holograms. This task is much more difficult in the vibratory domain because of the complexity of the equation of motion of the structure. The method presented here and called "Structural Holography" is particularly interesting when a direct measurement of the velocity field is not possible. Moreover, Structural Holography decreases the number of measurements required to reconstruct the displacement field of the entire plate.
Technical Paper

Reception Plate: a Comparative Test Bench of Structure-Borne Noise Sources

2016-06-15
2016-01-1798
The goal of the present study is to provide a simple method to compare structure borne noise sources in order to choose the most efficient one, considering the transmission of dynamic forces. It is well known that mechanical sources are not only dependent of the source itself but also of the receiving structure, in addition real sources cannot be reduced to a transverse force acting on the structure but more complicated effect like moment excitation must be taken into account. The advantage of the reception plate method is to characterize the source globally by the level of vibration of the reception plate whatever the type of excitation, the idea is basically to characterize mechanical sources as it is done for acoustical sources in reverberant rooms. A reception plate test bench has been developed to determine the power injected by mechanical sources. Two prototype plates have been designed in order to have different receiving mobilities.
Technical Paper

A Noise Source Identification Method as an Analysis Support Technique to Improve NVH Performances of 3D Structures"

2016-06-15
2016-01-1793
The constant evolution in the automotive sector to achieve more eco-friendly vehicles has induced the development of more efficient systems with new components and innovative materials. To evaluate the impact of these technologies or to improve them in terms of NVH performances, acoustic engineers rely on experimental tests and numerical computations. In this context, the use of experimental noise sources identification and characterization methods can provide interesting approaches. However, classical methods usually used in industry like the Nearfield Acoustical Holography (NAH) or the Beamforming techniques are quickly limited, in particular in terms of precision in localization, for such analysis support. The presented method, named M-iPTF for Mixed inverse Patch Transfer Functions, is more suitable as it is able to localize and quantify all acoustic source fields directly on the real geometry of a complex structure.
X