Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Development of Ultra-Low Synergized PGM as Diesel Oxidation Catalyst for Heavy-Duty Applications

2016-10-17
2016-01-2321
Stricter regulatory standards are continuously adopted worldwide to control heavy duty emissions, and at the same time, fuel economy requirements have significantly lowered exhaust temperatures. The net result is a significant increase in Precious Group Metal (PGM) usage with current Diesel Oxidation Catalyst (DOC) technology. Therefore, the design and development of synergized precious metal (SPGM) in which ultra-low PGM is synergized with mixed metal oxide (MMO) to achieve highly beneficial emission performance improvement, is necessary. The presence of MMO in SPGM is responsible for NO oxidation to NO2 which is critical for the passive regeneration of the downstream filter and SCR function. This paper presents an initial study outlining the development of MMOs for application in modern DOCs and addresses some specific challenges underlying this application. Lab and flow reactor data in this study demonstrated SPGM DOCs thermal resistance and sulfur poisoning resistance.
Technical Paper

Development of Non-Copper Advanced Spinel Mixed Metal Oxides for Zero-Precious Metal and Ultra-Low Precious Metal Next-Generation TWC

2016-04-05
2016-01-0933
In the context of evolving market conditions, the three-way catalyst (TWC) design is entering an exciting new phase. It remains the main emission control strategy for gasoline powered vehicles; in the meantime a rapid period of evolving engine developments, the constrained tailpipe regulations and the material supply issues present a unique challenge to the catalyst developers. A key approach here is to achieve highly beneficial emission performance based on the ultra-low PGM levels. In this regard, we mainly focus on the materials design and have developed the advanced spinel oxides for zero precious metals (ZPGM) and synergized precious metals (SPGM) TWCs. These advanced spinel materials showed improved thermal stability compared to that of PGM based standard materials. Fundamental studies on the microstructure of spinel oxide with newly developed composition confirm the aging stability.
X