Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Hardware Supported Data-Driven Modeling for ECU Function Development

2020-04-14
2020-01-1366
The powertrain module is being introduced to embedded System on Chips (SoCs) designed to increase available computational power. These high-performance SoCs have the potential to enhance the computational power along with providing on-board resources to support unexpected feature growth and on-demand customer requirements. This project will investigate the radial basis function (RBF) using the Gaussian process (GP) regression algorithm, the ETAS ASCMO tool, and the hardware accelerator Advanced Modeling Unit (AMU) being introduced by Infineon AURIX 2nd Generation. ETAS ASCMO is one of the solutions for data-driven modeling and model-based calibration. It enables users to accurately model, analyze, and optimize the behavior of complex systems with few measurements and advanced algorithms. Both steady state and transient system behaviors can be captured.
Journal Article

Development of a Fork-Join Dynamic Scheduling Middle-Layer for Automotive Powertrain Control Software

2017-03-28
2017-01-1620
Multicore microcontrollers are rapidly making their way into the automotive industry. We have adopted the Cilk approach (MIT 1994) to develop a pure ANSI C Fork-Join dynamic scheduling runtime middle-layer with a work-stealing scheduler targeted for automotive multicore embedded systems. This middle-layer could be running on top of any AUTOSAR compliant multicore RTOS. We recently have successfully integrated our runtime layer into parts of legacy Ford powertrain software at Ford Motor Company. We have used the 3-core AURIX multicore chip from Infineon and the multicore RTA-OS. For testing purposes, we have forked some parallelizable functions inside two periodic tasks in Ford legacy powertrain software to be dynamically scheduled and executed on the available cores. Our preliminary evaluation showed 1.3–1.4x speedups for these two forked tasks.
X