Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Correlation Analysis of Interior and Exterior Wind Noise Sources of a Production Car Using Beamforming Techniques

2017-03-28
2017-01-0449
Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
Journal Article

Effects of Installation Environment on Flow around Rear View Mirror

2017-03-28
2017-01-1517
External rear view mirror is attached at the side of the vehicle which is to permit clear vision for the driver to the rear of the vehicle. When the vehicle is running, the flow field around external rear view mirror is highly three-dimensional, unsteady, separated and turbulent which is known to be a significant source of aerodynamic noise and a contributor to the total drag force on the vehicle. While among all the researches on the flow field around external rear view mirror, different installation environment were employed. The external rear view mirror is mounted on a production car in most researches which presents the real condition and it can also be mounted on the ground of a wind tunnel, a specially designed table, or a generic vehicle model based on the SAE model. While, the relationship between the flow field around external rear view mirror and the installation environment is not very clear.
Technical Paper

Investigation of Radiation and Conjugate Heat Transfers for Vehicle Underbody

2008-06-23
2008-01-1819
A computational study was conducted in order to characterize the heat transfers in a sedan vehicle underbody and the exhaust system. A steady-state analysis with consideration for both the radiation and conjugate heat transfers was undertaken using the High-Reynolds formulation of the k-epsilon turbulence model with standard wall function and the DO model for the radiation heat transfer. All three mechanisms of heat transfer, i.e., convection, conduction, and radiation, were included in the analysis. The convective heat transfer due to turbulent fluid motion was modeled with the assumption of constant turbulent Prandtl number; and heat conduction was solved directly for both fluid and solid.
Technical Paper

Experimental Investigations of Effects of Collector on Performances of Automotive Wind Tunnel

2008-04-14
2008-01-1206
Effects of collector shape on the performance of an automotive wind tunnel are experimentally investigated in a 1:15 model wind tunnel. A few types of collectors, each with different collector shape, were tested. For each collector shape, pressure pulsation level, total sound pressure level, pressure distribution, maximum wind tunnel speed and pressure loss were measured. From these measured data, the effects of collector on the pressure loss, static pressure gradient at the test section, and on the performance of low frequency buffeting were deduced. Based on these data, a preferred collector is suggested.
Technical Paper

Simulation of Flow around a Generic Pickup Truck with RSM Model

2008-04-14
2008-01-0324
Computational fluid dynamics (CFD) was used to simulate the flow field over a pickup truck. The simulation was based on a transient state formulation and the focus of the simulation was to assess the capabilities of the current RSM (Reynolds Stresses Model) in CFD tools for vehicle aerodynamic development for pickup trucks. Detailed comparisons were made between the CFD simulations and the existing experiments for a generic pickup truck. It was found that the flow structures obtained from the CFD calculations are very similar to the corresponding measured mean flows. Furthermore, the surface pressure distributions are captured reasonably well by the CFD analysis. Comparison for computational results was carried out for both linear Pressure Strain model (Launder, Reece and Rodi, 1978) and Quadratic Pressure Strain model (Speziale, Sarkar and Gatski, 1991). The CFD results of Linear and Quadratic RSM are very close to the test data.
X