Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Timing Analysis for Hypervisor-based I/O Virtualization in Safety-Related Automotive Systems

2017-03-28
2017-01-1621
The increasing complexity of automotive functions which are necessary for improved driving assistance systems and automated driving require a change of common vehicle architectures. This includes new concepts for E/E architectures such as a domain-oriented vehicle network based on powerful Domain Control Units (DCUs). These highly integrated controllers consolidate several applications on different safety levels on the same ECU. Hence, the functions depend on a strictly separated and isolated implementation to guarantee a correct behavior. This requires middleware layers which guarantee task isolation and Quality of Service (QoS) communication have to provide several new features, depending on the domain the corresponding control unit is used for. In a first step we identify requirements for a middleware in automotive DCUs. Our goal is to reuse legacy AUTOSAR based code in a multicore domain controller.
Technical Paper

Virtual Multi-ECU High Fidelity Automotive System Simulation

2016-04-05
2016-01-0013
Automotive vehicles today consist of very complex network of electronic control units (ECU) connected with each other using different network implementations such as Controller Area Network (CAN), FlexRay, etc. There are several ECUs inside a vehicle targeting specific applications such as engine, transmission, body, steering, brakes, infotainment/navigation, etc. comprising on an average more than 50 ECUs executing more than 50 million lines of software code. It is expected to increase exponentially in the next few years. Such complex electric/electronic (E/E) architecture and software calls for a comprehensive, flexible and systematic development and validation environment especially for a system level or vehicle level development. To achieve this goal, we have built a virtual multi-ECU high fidelity cyber-physical multi-rate cosimulation that closely resembles a realistic hardware based automotive embedded system.
X