Criteria

Text:
Author:
Display:

Results

Viewing 1 to 6 of 6
2017-10-08
Technical Paper
2017-01-2218
Roman Varbanets, Sergey Karianskyi, Sergey Rudenko, Igor V. Gritsuk, Aleksey Yeryganov, Olena Kyrylash, Nadezhda Aleksandrovskaya
Operability and efficiency of automobiles and infrastructure of stationary power and transport significantly depends on technical condition and technical operation of internal combustion engines, mostly which are diesel engines. Expedient operation of diesel engines in processes holding a timely procedure of parameters monitoring of technical condition and identification, during the work. In the article features of diagnosing of the diesel engine with uniformity of loadings distribution between cylinders provided that of ensuring normal operating state of the fuel units and components of the main systems of the diesel are considered. Results of definition of engine power, efficiency of fuel using and observance of the main ecological restrictions depending on uniformity of distribution of loadings between cylinders are presented. Also in article the main methods of diagnosing of the diesel engine in processes of its work under operating conditions are described.
2017-07-24
Technical Paper
2017-01-5003
Igor V. Gritsuk, Valery Aleksandrov, Sergii Panchenko, Artur Kagramanian, Oksana Sobol, Aleksandr Sobolev, Roman Varbanets
Abstract Thermal control of a vehicle engine operation is a key aspect of the development of a vehicle warming-up systems. The use of heat accumulators and phase transition heat-accumulating materials is perspective. The given article describes the ways of improving thermal properties of phase transition heat-accumulating materials in the processes of their designing, the efficient ways of heat transfer from phase transition heat-accumulating materials to heat carrying agent of heat accumulators and then to vehicles. To create reliable phase transition heat-accumulating materials, different ways of their realization are suggested. One of them is the construction of the corresponding phase diagrams to determine an optimal composition of phase transition heat-accumulating materials with higher thermal properties to operate in a given temperature range.
2017-03-28
Technical Paper
2017-01-0092
Vladimir Hahanov, Wajeb Gharibi, Eugenia Litvinova, Svitlana Chumachenko, Arthur Ziarmand, Irina Englesi, Igor Gritsuk, Vladimir Volkov, Anastasiia Khakhanova
Abstract The new cyber-technological culture of the transport control based on virtual road signs and streetlight signals on the screen of car is the future of Humanity. A cyber-physical system (CPS) Smart Cloud Traffic Control, which realizes the mentioned culture, is proposed; it is characterized by the presence of the digitized regulatory rules, vehicles, infrastructure components, and also accurate monitoring, active cloud streetlight-free cyber control of road users, traffic lights, automatic output of operational regulatory actions (virtual traffic signs and traffic signals) to monitor of each vehicle. The main components of the cyber-physical system are the following: infrastructure, road users and rules, which have digital representation in cyberspace to realize a route, based on digital monitoring and cloud mobile control.
2017-01-10
Journal Article
2017-26-0364
Igor Gritsuk, Vladimir Volkov, Vasyl Mateichyk, Yurii Gutarevych, Mykola Tsiuman, Nataliia Goridko
Abstract The article suggests the results of experimental and theoretical studies of the engine heating system with a phase-transitional thermal accumulator when the vehicle is in motion in a driving cycle. The aim of the study is to evaluate the efficiency of the vehicle heating system within thermal accumulator and catalytic converter under operating conditions. The peculiarity of the presented system is that it uses thermal energy of exhaust gases to accumulate energy during engine operation. The article describes the methodology to evaluate vehicle fuel consumption and emission in the driving cycle according to the UNECE Regulation № 83-05. The methodology takes into account the environmental parameters, road conditions, the design parameters of the vehicle, the modes of its motion, thermal state of the engine cooling system and the catalytic converter.
2016-09-27
Technical Paper
2016-01-8071
Igor Gritsuk, Vladimir Volkov, Yurii Gutarevych, Vasyl Mateichyk, Valeriy Verbovskiy
Abstract The article discusses the use of the combined heating system with phase-transitional thermal accumulator. The peculiarity of the presented system is that it uses thermal energy of exhaust gas, coolant and motor oil, and emissions of the internal combustion engine during its operation to accumulate the thermal energy. The results of experimental studies of the combined heating system are shown. A system and methods for pre-start and after-start heating of the vehicular engine in the investigated system are developed. The structure of the "combined heating” system to study the impact of its structural and adjustment parameters on the performance of thermal development of the vehicular engine is described. The use of the combined heating system within phase-transitional thermal accumulators is compared with the use of standard systems for a truck engine 8FS 9.2 / 8. It reduces the time of coolant and motor oil thermal development by 22.9-57.5% and 25-57% accordingly.
2016-04-05
Technical Paper
2016-01-0204
Igor Gritsuk, Yurii Gutarevych, Vasyl Mateichyk, Vladimir Volkov
Abstract The article discusses the features of applying vehicular engine heating system with phase-transitional thermal accumulator. The peculiarity of the presented system is that it uses thermal energy of exhaust gases from internal combustion engine during its operation to accumulate heat. The results of experimental studies of heating the vehicular engine are shown. The article describes the structure of information package for studying the internal combustion engine of a vehicle with heating system and thermal accumulator during the start and after-start heating. The package allows engine performance parameters and engine thermal development to be estimated from distance within intelligent transport systems. Using phase-transitional thermal accumulator in engine coolant heater system (case studied: G4GC (4FS 8.2 / 9.35) of KIA CEE'D 2.0 5MT2) reduces time for heating by 17.8 - 68.4% and fuel consumption by 19.5 - 56.25%.
Viewing 1 to 6 of 6