Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

CFD Simulation to Understand Auto-Ignition Characteristics of Dual Fuel Strategies using High- and Low-Octane Fuels: A Step Towards The Octane-On-Demand Engine

2017-03-28
2017-01-1281
Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. The aim of the current research program (OOD: Octane On Demand) is to use the octane number as a tuning parameter to simultaneously make the engine more efficient and reduce CO2 emissions. The idea is to prevent knock occurrence by adapting the fuel RON injected in the combustion chamber. Thus, the engine cycle efficiency is increased by keeping combustion phasing at its optimum. This is achieved by a dual fuel injection strategy, involving a low-RON base fuel (Naphtha or Low RON cost effective fuel) and a high-RON octane booster (ethanol). The ratio of fuel quantity on each injector is adapted at each engine cycle to fit the RON requirement as a function of engine operating conditions. A first part of the project, described in [18], was dedicated to the understanding of mixture preparation resulting from different dual-fuel injection strategies.
Journal Article

Simulation and Optical Diagnostics to Characterize Low Octane Number Dual Fuel Strategies: a Step Towards the Octane on Demand Engine

2016-10-17
2016-01-2164
Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. Downsizing is one of the most promising strategies to achieve this reduction, though it facilitates occurrence of knocking. Therefore, downsizing has to be associated with knock limiting technologies. The aim of the current research program is to adapt the fuel Research-Octane-Number (RON) injected in the combustion chamber to prevent knock occurrence and keep combustion phasing at optimum. This is achieved by a dual fuel injection strategy, involving a low-RON naphtha-based fuel (Naphtha, RON 71) and a high-RON octane booster (Ethanol, RON107). The ratio of fuel quantity on each injector is adapted to fit the RON requirement as a function of engine operating conditions. Hence, it becomes crucial to understand and predict the mixture preparation, to quantify its spatial and cycle-to-cycle variations and to apprehend the consequences on combustion behavior - knock especially.
Technical Paper

Fuel Properties and Engine Injection Configuration Effects on the Octane on Demand Concept for a Dual-Fuel Turbocharged Spark Ignition Engine

2016-10-17
2016-01-2307
Efficiency of spark ignition (SI) engines is limited towards high loads by the occurrence of knock, which is linked to the octane number of the fuel. Running the engine at its optimal efficiency requires a high octane number at high load whereas a low octane number can be used at low load. Current project aims at developing an “Octane on Demand” (OOD) concept: the fuel octane number is adjusted “on demand” to prevent knock occurrence by adapting the fuel RON injected in the combustion chamber. Thus, the engine cycle efficiency is increased by always keeping combustion phasing at optimum. This is achieved by a dual fuel injection strategy, involving a low-RON base-fuel and a high-RON octane booster. The ratio of fuel quantity on each injector is adapted to fit the RON requirement function of engine operating conditions. This OOD concept requires a good characterization of the octane requirement needed to run the engine at its optimal efficiency over the entire map.
Journal Article

Using Ethanol’s Double Octane Boosting Effect with Low RON Naphtha-Based Fuel for an Octane on Demand SI Engine

2016-04-05
2016-01-0666
The efficiency of spark ignition (SI) engines is usually limited by the occurrence of knock, which is linked to fuel octane number. If running the engine at its optimal efficiency requires a high octane number at high load, a lower octane number can be used at low load. Saudi Aramco, along with its long-term partner IFP Energies nouvelles, has been developing a synergistic fuel engine system where the engine is fed by fuel with an octane number adjusted in real time, on an as needed basis, while running at its optimal efficiency. Two major steps are identified to develop this “Octane on Demand” (OOD) concept: First, characterize the octane requirement needed to run the engine at its optimal efficiency over the entire map. Then, select the best dual fuel combination, including a base fuel and an octane booster to fit this concept.
X