Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

Optical Investigation of Ignition Timing and Equivalence Ratio in Dual-Fuel CNG/Diesel Combustion

2016-04-05
2016-01-0772
Dual-fuel engines are recognized as a short-medium term solution to reduce fuel consumption and pollutant emissions of CI engines, while maintaining high energy efficiency. Methane (CH4) was chosen as it offers the best compromise between its heating value and H/C ratio. The high auto-ignition temperature of CH4 requires auto-igniting a small quantity of liquid diesel before it initiates the combustion of the mixture. Therefore, new engine operations need to be specifically developed. This investigation explores the impact of time sequences of injection of the liquid fuel on the ignition of homogenous methane/air mixture. Experiments were performed on a Rapid Compression Expansion Machine (RCEM), to reproduce the operating and dynamic conditions encountered in a diesel engine cycle, allowing visualizations of fuel injection and combustion processes through a transparent piston.
X