Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a High-Voltage Battery Pack Thermal Model at Vehicle Level for Plug-in Hybrid Applications

2022-06-14
2022-37-0023
The ongoing global demand for greater energy efficiency plays an essential role in the automotive industry, as the focus is moving from ICEs to hybrid (HEVs) and electric (EVs) vehicles. New virtual methodologies are necessary to reduce the development effort of these technologies. In this context, the thermal management of the vehicle high voltage battery pack is becoming increasingly important, with significant impact on the vehicle’s range in different environmental scenarios. In this paper, an advanced method is proposed to compute 3D temperature distribution of the cells of a high voltage battery pack for Plug-in Hybrid (PHEV) or full electric (EV) applications. The thermal FE model of a complete PHEV vehicle was integrated with an electrical NTG equivalent circuit model of the HV battery to compute the heat loads of the cells.
Journal Article

Identification of Automotive Cabin Design Parameters to Increase Electric Vehicles Range, Coupling CFD-Thermal Analyses with Design for Six Sigma Approach

2020-06-30
2020-37-0032
The ongoing global demand for greater energy efficiency plays an essential role in vehicle development, especially in the case of electric vehicles (EVs). The thermal management of the full vehicle is becoming increasingly important, since the Heating, Ventilation, and Air Conditioning (HVAC) system has a significant impact on the EV range. Therefore the EV design requires new guidelines for thermal management optimization. In this paper, an advanced method is proposed to identify the most influential cabin design factors which affect the cabin thermal behavior during a cool down drive cycle in hot environmental conditions. These parameters could be optimized to reduce the energy consumption and to increase the robustness of the vehicle thermal response. The structured Taguchi’s Design for Six Sigma (DFSS) approach was coupled with CFD-Thermal FE simulations, thanks to increased availability of HPC.
Technical Paper

Modelling of Car Cabin Thermal Behaviour during Cool Down, Using an Advanced CFD/Thermal Approach

2016-04-05
2016-01-0213
The aim of this work has been to develop an advanced methodology to model the car cabin cool down test. It has been decided to focus the attention on the fluid dynamics and thermal dynamics aspects of the phenomenon, trying to catch the correct heat transfer between the outside environment and the internal cabin with a thermal tool, together with an internal flows CFD simulation. To start with, an experimental cool down test was conducted in the FCA Italy climatic wind tunnel on a L0 segment vehicle, to get the correlation data and the boundary conditions required for the simulation: panel ducts air transient temperatures, wind tunnel air temperature and velocity, solar array load. The simulation was divided into two steps: steady state soak with a finite difference based thermal solver and transient cool down, coupling the thermal solver with a CFD one. In particular an advanced CFD/thermal coupled approach has been applied, using STAR-CCM+® and TAITherm® tools.
X