Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Technical Paper

Phenomenological 0-Dimensional Combustion Model for Spark-Ignition Natural Gas Engine Equipped with Pre-Chamber

2016-04-05
2016-01-0556
3D CFD (Computational Fluid Dynamics) is widely used as a useful design tool because of its efficiency in engine development. In contrast, the computational time in 3D CFD with chemical reaction calculations is much longer than the 0D/1D CAD (Computer Aided Design) tools. Computational time reduction in engine combustion tools is necessary for more efficient engine development. The objective in this research is to develop a phenomenological 0D combustion model for a spark ignition engine. We especially focused on a spark ignition pre-chamber-type gas engine which has a spark plug in the pre-chamber. The combustion process in a pre-chambertype gas engine is complicated and difficult to be modeled. Therefore, in the presented work, the combustion process and heat release rate is analyzed in detail. The proposed methodology consists of three major processes. Firstly, turbulence in the pre-chamber is generated by compressed gas flow from the main chamber during the compression stroke.
X