Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Experimental Investigations on the Influence of Valve Timing and Multi-Pulse Injection on GCAI Combustion

2019-04-02
2019-01-0967
Gasoline Controlled Auto-Ignition (GCAI) combustion, which can be categorized under Homogeneous Charge Compression Ignition (HCCI), is a low-temperature combustion process with promising benefits such as ultra-low cylinder-out NOx emissions and reduced brake-specific fuel consumption, which are the critical parameters in any modern engine. Since this technology is based on uncontrolled auto-ignition of a premixed charge, it is very sensitive to any change in boundary conditions during engine operation. Adopting real time valve timing and fuel-injection strategies can enable improved control over GCAI combustion. This work discusses the outcome of collaborative experimental research by the partnering institutes in this direction. Experiments were performed in a single cylinder GCAI engine with variable valve timing and Gasoline Direct Injection (GDI) at constant indicated mean effective pressure (IMEP). In the first phase intake and exhaust valve timing sweeps were investigated.
Technical Paper

A Study on In-Cycle Combustion Control for Gasoline Controlled Autoignition

2016-04-05
2016-01-0754
Gasoline Controlled Auto Ignition offers a high CO2 emission reduction potential, which is comparable to state-of-the-art, lean stratified operated gasoline engines. Contrary to the latter, GCAI low temperature combustion avoids NOX emissions, thereby trying to avoid extensive exhaust aftertreatment. The challenges remain in a restricted operation range due to combustion instabilities and a high sensitivity towards changing boundary conditions like ambient temperature, intake pressure or fuel properties. Once combustion shows instability, cyclic fluctuations are observed. These appear to have near-chaotic behavior but are characterized by a superposition of clearly deterministic and stochastic effects. Previous works show that the fluctuations can be predicted precisely when taking cycle-tocycle correlations into account. This work extends current approaches by focusing on additional dependencies within one single combustion cycle.
X