Refine Your Search

Topic

Search Results

Author:
Viewing 1 to 18 of 18
Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Designing a Prototype of a Mobile Charging Robot for Charging of Electric Vehicles

2024-07-02
2024-01-2990
As the market for electric vehicles grows, so does the demand for appropriate charging infrastructure. The availability of sufficient charging points is essential to increase public acceptance of electric vehicles and to avoid the so-called “charging anxiety”. However, the charging stations currently installed may not be able to meet the full charging demand, especially in areas where there is a general lack of grid infrastructure, or where the fluctuating nature of charging demand requires flexible, high-power charging solutions that do not require expensive grid extensions. In such cases, the use of mobile charging stations provides a good opportunity to complement the existing charging network. This paper presents a prototype of a mobile charging solution that is being developed as part of an ongoing research project, and discusses different use cases.
Technical Paper

Simulating a V2G Concept for Optimized EV Fleet Charging in India

2024-01-16
2024-26-0101
Road transport is bound to play a major role in the imminent transition to green energy. India has pledged to reach net-zero greenhouse gas emissions by 2070 at the COP26 [1] and is committed to have 30% electric vehicle (EV) sales by 2030 [2]. The Indian government is promoting fleet electrification through initiatives like FAME–II. India’s EV market is expected to grow at an annual rate of 90% between 2022 and 2030 [3]. With this projection combined with climate targets, comes an anticipated exponential rise in renewable energy contribution to the national power grid, accompanied by a huge transport-related demand for electricity. NITI Aayog – India’s public policy think tank – and the Ministry of Power are already looking into the expansion of EV charging infrastructure in India as part of smart grid implementation. The deployment of Vehicle-to-Grid (V2G) technology as an extension of the smart charging initiative is essential for a smooth transition to renewable energy.
Technical Paper

Current and Torque Harmonics Analysis of Dual Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2023-04-11
2023-01-0527
Dual three-phase permanent magnet synchronous machines (DTP-PMSM) are becoming increasingly popular in automotive electric powertrains due to their reduced phase currents and fault tolerance. The unique advantages of specific phase shift angles (such as 0°, 30°, 60°, etc.) between dual three-phase windings have been extensively studied. In this paper, the current and torque harmonics induced by the inverter are analyzed and the corresponding harmonics suppression strategy are proposed for a DTP-PMSM with different phase shift angles. In addition, this paper analyzes the effect of the phase shift angle between the dual three-phase windings on the torque ripple and phase losses, and proposes a novel optimal phase shift angle 80°. First, a mathematical vector space decomposition (VSD) model for a DTP-PMSM with arbitrary phase shift angles is derived.
Technical Paper

Hardware-in-the-Loop Testing of Electric Traction Drives with an Efficiency Optimized DC-DC Converter Control

2020-04-14
2020-01-0462
In order to reduce development cost and time, frontloading is an established methodology for automotive development programs. With this approach, particular development tasks are shifted to earlier program phases. One prerequisite for this approach is the application of Hardware-in-the-Loop test setups. Hardware-in-the-Loop methodologies have already successfully been applied to conventional as well as electrified powertrains considering various driving scenarios. Regarding driving performance and energy demand, electrified powertrains are highly dependent on the dc-link voltage. However, there is a particular shortage of studies focusing on the verification of variable dc-link voltage controls by Hardware-in-the-Loop setups. This article is intended to be a first step towards closing this gap. Thereto, a Hardware-in-the-Loop setup of a battery electric vehicle is developed.
Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks.
Technical Paper

Efficient Power Electronic Inverter Control Developed in an Automotive Hardware-in-the-Loop Setup

2019-04-02
2019-01-0601
Hardware-in-the-Loop is a common and established testing method for automotive developments in order to study interactions between different vehicle components during early development phases. Hardware-in-the-Loop setups have successfully been utilized within several development programs for conventional and electrified powertrains already. However, there is a particular shortage of studies focusing on the development of inverter controls utilizing Hardware-in-the-Loop tests. This contribution shall provide a first step toward closing this gap. In this article, inverter controls with different pulse width modulations for varying modulation index are studied at a Hardware-in-the-Loop setup. Thereto, the inverter control for an interior permanent magnet synchronous machine is developed utilizing space vector pulse width modulation with overmodulation.
Technical Paper

Experimental Investigations on the Influence of Valve Timing and Multi-Pulse Injection on GCAI Combustion

2019-04-02
2019-01-0967
Gasoline Controlled Auto-Ignition (GCAI) combustion, which can be categorized under Homogeneous Charge Compression Ignition (HCCI), is a low-temperature combustion process with promising benefits such as ultra-low cylinder-out NOx emissions and reduced brake-specific fuel consumption, which are the critical parameters in any modern engine. Since this technology is based on uncontrolled auto-ignition of a premixed charge, it is very sensitive to any change in boundary conditions during engine operation. Adopting real time valve timing and fuel-injection strategies can enable improved control over GCAI combustion. This work discusses the outcome of collaborative experimental research by the partnering institutes in this direction. Experiments were performed in a single cylinder GCAI engine with variable valve timing and Gasoline Direct Injection (GDI) at constant indicated mean effective pressure (IMEP). In the first phase intake and exhaust valve timing sweeps were investigated.
Technical Paper

Accurate Mean Value Process Models for Model-Based Engine Control Concepts by Means of Hybrid Modeling

2019-04-02
2019-01-1178
Advanced powertrains for modern vehicles require the optimization of conventional combustion engines in combination with tailored electrification and vehicle connectivity strategies. The resulting systems and their control devices feature many degrees of freedom with a large number of available adjustment parameters. This obviously presents major challenges to the development of the corresponding powertrain control logics. Hence, the identification of an optimal system calibration is a non-trivial task. To address this situation, physics-based control approaches are evolving and successively replacing conventional map-based control strategies in order to handle more complex powertrain topologies. Physics-based control approaches enable a significant reduction in calibration effort, and also improve the control robustness.
Technical Paper

Real-Time Modeling of a 48V P0 Mild Hybrid Vehicle with Electric Compressor for Model Predictive Control

2019-04-02
2019-01-0350
In order to reduce pollutant and CO2 emissions and fulfill future legislative requirements, powertrain electrification is one of the key technologies. In this context, especially 48V technologies offer an attractive cost to CO2 reduction ratio. 48V mild hybrid powertrains greatly benefit from additional electric intake air compression (E-Charging) and direct torque assist by an electric machine (E-Boosting). Both systems significantly improve the transient engine behavior while reducing the low end torque drawbacks of extreme downsizing and downspeeding. Since E-Charging and E-Boosting have different characteristics concerning transient torque response and energy efficiency, application of model predictive control (MPC) is a particularly suitable method to improve the operating strategy of these functions. MPC requires fast running real-time capable models that are challenging to develop for systems with pronounced nonlinearities.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
Journal Article

Virtual 48 V Mild Hybridization: Efficient Validation by Engine-in-the-Loop

2018-04-03
2018-01-0410
New 12 V/48 V power net architectures are potential solutions to close the gap between customer needs and legislative requirements. In order to exploit their potential, an increased effort is needed for functional implementation and hardware integration. Shifting of development tasks to earlier phases (frontloading) is a promising solution to streamline the development process and to increase the maturity level at early stages. This study shows the potential of the frontloading of development tasks by implementing a virtual 48 V mild hybridization in an engine-in-the-loop (EiL) setup. Advanced simulation technics like functional mock-up interface- (FMI) based co-simulation are utilized for the seamless integration of the real-time (RT) simulation models and allow a modular simulation framework as well as a decrease in development time.
Journal Article

Hardware-in-the-Loop-Based Virtual Calibration Approach to Meet Real Driving Emissions Requirements

2018-04-03
2018-01-0869
The use of state-of-the-art model-based calibration tools generate only limited benefits for seamless validation in powertrain calibration due to the often neglected system-level simulation of a closed-loop vehicle environment. This study presents a Hardware-in-the-Loop (HiL)-based virtual calibration approach to establish an accurate virtual calibration platform using physical plant models. It is based on a customisable real-time HiL simulation environment. The use of physical models to predict the behaviour of a complete powertrain makes the HiL test bench particularly suited for Engine Control Unit (ECU) calibration. With the virtual test rig approach, the calibration for the critical extended driving and ambient conditions of the new Real Driving Emissions (RDE) requirements can efficiently be optimised. This technique offers a clear advantage in terms of reducing calibration time and costs.
Journal Article

Crank-Angle Resolved Real-Time Engine Modelling: A Seamless Transfer from Concept Design to HiL Testing

2018-04-03
2018-01-1245
Virtual system integration and testing using hardware-in-the-loop (HiL) simulation enables front-loading of development tasks, provides a safer and reliable testing environment and reduces prototype hardware costs. One of the greatest challenges to overcome when performing HiL simulations is assuring a high model accuracy under stringent real-time requirements with acceptable development effort. This article represents a novel solution by deriving the plant model for HiL directly from the existing detailed models from the component layout phase using co-simulation methodology. It provides an effective and efficient model implementation and validation process followed by detailed quantitative analysis of the test results referred to the engine test bench measurements.
Technical Paper

Virtual Transmission Evaluation Using an Engine-in-the-Loop Test Facility

2018-04-03
2018-01-1361
This paper describes an approach to reduce development costs and time by frontloading of engineering tasks and even starting calibration tasks already in the early component conception phases of a vehicle development program. To realize this, the application of a consistent and parallel virtual development and calibration methodology is required. The interaction between vehicle subcomponents physically available and those only virtually available at that time, is achieved with the introduction of highly accurate real-time models on closed-loop co-simulation platforms (HiL-simulators) which provide the appropriate response of the hardware components. This paper presents results of a heterogeneous testing scenario containing a real internal combustion engine on a test facility and a purely virtual vehicle using two different automatic transmission calibration and hardware setups.
Journal Article

Engine in the Loop: Closed Loop Test Bench Control with Real-Time Simulation

2017-03-28
2017-01-0219
The complexity of automobile powertrains grows continuously. At the same time, development time and budget are limited. Shifting development tasks to earlier phases (frontloading) increases the efficiency by utilizing test benches instead of prototype vehicles (road-to-rig approach). Early system verification of powertrain components requires a closed-loop coupling to real-time simulation models, comparable to hardware-in-the-loop testing (HiL). The international research project Advanced Co-Simulation Open System Architecture (ACOSAR) has the goal to develop a non-proprietary communication architecture between real-time and non-real-time systems in order to speed up the commissioning process and to decrease the monetary effort for testing and validation. One major outcome will be a generic interface for coupling different simulation tools and real-time systems (e.g. HiL simulators or test benches).
Journal Article

Next-Generation Low-Voltage Power Nets Impacts of Advanced Stop/Start and Sailing Functionalities

2017-03-28
2017-01-0896
The range of tasks in automotive electrical system development has clearly grown and now includes goals such as achieving efficiency requirements and complying with continuously reducing CO2 limits. Improvements in the vehicle electrical system, hereinafter referred to as the power net, are mandatory to face the challenges of increasing electrical energy consumption, new comfort and assistance functions, and further electrification. Novel power net topologies with dual batteries and dual voltages promise a significant increase in efficiency with moderate technological and financial effort. Depending on the vehicle segment, either an extension of established 12 V micro-hybrid technologies or 48 V mild hybridization is possible. Both technologies have the potential to reduce fuel consumption by implementing advanced stop/start and sailing functionalities.
Technical Paper

A Study on In-Cycle Combustion Control for Gasoline Controlled Autoignition

2016-04-05
2016-01-0754
Gasoline Controlled Auto Ignition offers a high CO2 emission reduction potential, which is comparable to state-of-the-art, lean stratified operated gasoline engines. Contrary to the latter, GCAI low temperature combustion avoids NOX emissions, thereby trying to avoid extensive exhaust aftertreatment. The challenges remain in a restricted operation range due to combustion instabilities and a high sensitivity towards changing boundary conditions like ambient temperature, intake pressure or fuel properties. Once combustion shows instability, cyclic fluctuations are observed. These appear to have near-chaotic behavior but are characterized by a superposition of clearly deterministic and stochastic effects. Previous works show that the fluctuations can be predicted precisely when taking cycle-tocycle correlations into account. This work extends current approaches by focusing on additional dependencies within one single combustion cycle.
X