Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Advanced Emission Controls and E-fuels on a Gasoline Car for Zero-Impact Emissions

2022-08-30
2022-01-1014
The electrified internal combustion engine can contribute to further improving air quality and reducing impact on climate change. A previous publication looked into ultra-low initial cold-start emissions with the implementation of a state-of-the-art emission control system on a gasoline vehicle with market E10 gasoline. This paper reports additional investigations on different drop-in sustainable renewable fuels, including e-fuels. The gasoline demonstrator vehicle is equipped with a 48V mild-hybrid powertrain with a 1.5 L direct injection engine. The innovative emission control system consists of an electrically pre-heated catalyst (EHC) and first three-way catalyst (TWC) in close-coupled position, in combination with an underfloor catalysed gasoline particulate filter (cGPF), second TWC and ammonia slip catalyst (ASC). Pollutant emission tests are conducted on a challenging chassis dyno test for cold-start emissions at 23 °C and -10 °C.
Journal Article

Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel

2016-10-17
2016-01-2208
Gasoline Compression Ignition (GCI) engines using a low octane gasoline-like fuel (LOF) have good potential to achieve lower NOx and lower particulate matter emissions with higher fuel efficiency compared to the modern diesel compression ignition (CI) engines. In this work, we conduct a well-to-wheels (WTW) analysis of the greenhouse gas (GHG) emissions and energy use of the potential LOF GCI vehicle technology. A detailed linear programming (LP) model of the US Petroleum Administration for Defense District Region (PADD) III refinery system - which produces more than 50% of the US refined products - is modified to simulate the production of the LOF in petroleum refineries and provide product-specific energy efficiencies. Results show that the introduction of the LOF production in refineries reduces the throughput of the catalytic reforming unit and thus increases the refinery profit margins.
X