Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Uncertainty Characterization and Quantification in Product Validation and Reliability Demonstration

2016-04-05
2016-01-0270
Product validation and reliability demonstration require testing of limited samples and probabilistic analyses of the test data. The uncertainties introduced from the tests with limited sample sizes and the assumptions made about the underlying probabilistic distribution will significantly impact the results and the results interpretation. Therefore, understanding the nature of these uncertainties is critical to test method development, uncertainty reduction, data interpretation, and the effectiveness of the validation and reliability demonstration procedures. In this paper, these uncertainties are investigated with the focuses on the following two aspects: (1) fundamentals of the RxxCyy criterion used in both the life testing and the binomial testing methods, (2) issues and benefits of using the two-parameter Weibull probabilistic distribution function.
Journal Article

A Unified Framework for Representing Product Validation Testing Methods and Conducting Reliability Analysis

2016-04-05
2016-01-0269
Durability and reliability performance is one of the most important concerns for vehicle components and systems, which experience cyclic fatigue loadings and may eventually fail over time. Durability and reliability assessment and associated product validation require effective and robust testing methods. Several testing methods are available and among them, three basic testing methods are widely used: life testing, binomial testing (bogey testing), and degradation testing. In fact, their commonalities, differences, and relationships have not been clearly defined and fully understood. Therefore, the maximum potential of these testing methods to generate efficient, optimized, and cost-effective testing plans, consistent results, and meaningful results interpretation have been significantly limited. In this paper, a unified framework for representing these testing methods and conducting reliability analysis in a single damage-cycle (D-N) diagram is provided.
Journal Article

Approaches to Achieving High Reliability and Confidence Levels with Small Test Sample Sizes

2015-09-29
2015-01-2758
In product design and development stage, validation assessment methods that can provide very high reliability and confidence levels are becoming highly demanded. High reliability and confidence can generally be achieved and demonstrated by conducting a large number of tests with the traditional approaches. However, budget constraints, test timing, and many other factors significantly limit test sample sizes. How to achieve high reliability and confidence levels with limited sample sizes is of significant importance in engineering applications. In this paper, such approaches are developed for two fundamental and widely used methods, i.e. the test-to-failure method and the Binomial test method. The concept of RxxCyy (e.g. R90C90 indicates 90% in reliability and 90% in confidence) is used as a criterion to measure the reliability and confidence in both the test-to-failure and the Binomial test methods.
X