Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Optimisation of Steering System Geometry of Longer FOH Commercial Vehicles

2015-09-29
2015-01-2721
Commercial vehicle industry is presently striving towards development of buses with enhanced passenger safety and comfort. This calls for additional components and aggregates that eventually lead to increase in the overall length and gross vehicle weight (GVW) of the bus for the same passenger capacity. Usually, steering system of longer front overhang (FOH) vehicles have multiple linkages such as bevel box arrangement or intermediate pivot arm arrangement instead of single direct draglink because of packaging and design constraints. In this work, an attempt has been made to design the steering system for one of the longer FOH bus with single direct draglink arrangement. Here, single draglink was packaged and designed with commercially available higher strength tube material. Design optimisation of steering geometry was carried such that the steering performance was atleast on par with existing performance.
Technical Paper

Failure Analysis and Design Optimisation of Steering Linkage Pivot Shaft of Commercial Vehicle

2015-09-29
2015-01-2726
Commercial vehicles have steering systems with one or more steering links connecting the steering gear box pitman arm and front axle steering arm. In case of twin steer vehicles, intermediate pivot arm is used to transfer the motion proportionately between the two front axles. Intermediate pivot arm is also used in some longer front over-hang vehicles to overcome their packaging constraints and to optimize the mechanical leverage. The pivot shaft is a mechanical part of the intermediate pivot arm assembly upon which pivot arm can swivel in one axis. Steering forces transferred through the drag links generates resultant forces and bending moments on the pivot shaft. In this work, study has been carried out on premature failure of the pivot shaft in city bus application model (Entry + 1 step). Metallurgical analysis of failed part indicated the failure to be due to fatigue. Pivot shaft was tested in rig with similar load conditions in order to replicate the failure.
X