Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Early Research on Additively Manufactured Sound Absorbers

2019-06-05
2019-01-1576
Additive manufacturing is slowly changing how components are developed and manufactured. As the technology develops over time, it is anticipated that industry will 3D print sound absorbers in production. Configurations may be considered that would be difficult to manufacture in another way. For exploratory purposes, several designs were 3D printed and positioned in an impedance tube for testing. Though the absorbers developed are based on well-established strategies, the absorbers considered are either difficult to manufacture by another means or take advantage of the unique features of 3D printed parts. The samples measured include long perforations, lightweight panels, and Helmholtz resonators with spiral wound necks. Selected results are compared with acoustic finite element analysis.
Journal Article

Diffuse Field Sound Absorption of Microperforated Panels with Special Backings

2017-06-05
2017-01-1876
Microperforated panel absorbers are best considered as the combination of the perforate and the backing cavity. They are sometimes likened to Helmholtz resonators. This analogy is true in the sense that they are most effective at the resonant frequencies of the panel-cavity combination when the particle velocity is high in the perforations. However, unlike traditional Helmholtz resonators, microperforated absorbers are broader band and the attenuation mechanism is dissipative rather than reactive. It is well known that the cavity depth governs the frequency bands of high absorption. The work presented here focuses on the development, modeling and testing of novel configurations of backing constructions and materials. These configurations are aimed at both dialing in the absorption properties at specific frequencies of interest and creating broadband sound absorbers. In this work, several backing cavity strategies are considered and evaluated.
X