Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Downsized Gasoline Engine Cylinder Deactivation MiL Development and Validation Using Real-Time 1-D Gas Code

2018-04-03
2018-01-1244
Cylinder deactivation has become common not only in large swept volume gasoline V-engines but also in cheaper highly downsized automotive engines. Cylinder deactivation strategy leads to a combination of reduced throttling and pumping losses and consequently, to CO2 emissions reduction. This is achieved by deactivation of some cylinders and by moving the operation point of the firing cylinders to higher loads to compensate for the deactivated cylinders. This paper focuses on the 1.4 litre direct injection gasoline 4-cylinder (inline) engine and the development of its deactivation strategy in the Model in the Loop (MiL) environment using the Ricardo 1-D gas real-time code ‘WAVE-RT’ as the virtual engine controlled by the engine control strategy. The engine control strategy can be easily flashed into rapid prototyping ECU and validated on the testbed.
Technical Paper

Predicting and Minimizing Virtual Vehicle Cold Start Driveline Model with a Real-Time 1-D Gas Engine Code and Chemical Kinetics Aftertreatment

2018-04-03
2018-01-1425
The upcoming World-harmonized Light-duty Vehicles Test Cycle (WLTC) together with the Real Driving Emissions (RDE) legislation used for the assessment of fuel economy and emissions, demand a start from a cold engine state. The process of warming up the engine from a cold start has a significant contribution to the emissions and fuel economy of the entire drive cycle. The process involves a multitude of interdependent components which means that modelling the phenomena has so far only been achieved using highly simplified approaches or accepting a very large penalty on calculation time. This paper presents a modelling of the real-time running virtual vehicle whose parts are built in different domains connected with the Functional Mock-up Interface (FMI) co-simulation standard. A real- time 1-D gas thermodynamics code ‘WAVE-RT’ is used as a virtual gasoline engine providing detailed information about any chosen parameters at every engine crank angle.
Technical Paper

Catalyst and DPF Acoustic Transmission Loss Benchmark Study

2017-06-05
2017-01-1798
The ability to accurately predict exhaust system acoustics, including transmission loss (TL) and tailpipe noise, based on CAD geometry has long been a requirement of most OEM’s and Tier 1 exhaust suppliers. Correlation to measurement data has been problematic under various operating conditions, including flow. This study was undertaken to develop robust modelling technique, ensuring sensible correlation between the 1-D models and test data. Ford use Ricardo WAVE as one of their 1-D NVH tools, which was chosen for the purpose of this benchmark study. The most commonly used metrics for evaluating the acoustical performance of mufflers are insertion loss (IL), TL, and noise reduction (NR). TL is often the first step of analysis, since it represents the inherent capability of the muffler to attenuate sound if both the source and termination are assumed to be anechoic. It can also be reliably measured and numerically simulated without having to connect to an engine.
Technical Paper

Sensorless Control Strategy Enabled by a Sophisticated Tool Chain

2015-09-29
2015-01-2847
Internal combustion engines continue to grow more complex every day out of necessity. Legislation and increasing customer demand means that advanced technologies like variable valve actuation (VVA), multi-path exhaust gas recirculation (EGR), advanced boosting, and aftertreatment systems continue to drive ever-expanding requirements for engine control to improve performance, fuel economy, and reduce emissions. Therefore, controller development and implementation are becoming more costly, both in terms of time and the monetary investment in engine hardware. To help reduce these costs, a sophisticated tool chain has been created which allows a real-time, physical, crank-angle resolved one-dimensional (1D) engine model to be implemented on a rapid prototyping engine control unit (ECU) which is then used in the control strategy of a running engine. Model-based controllers have been developed and validated to perform as well as or better than controllers using traditional sensors.
X