Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

An Integrated Approach for Dynamic Charging of Electric Vehicles by Wireless Power Transfer - Lessons Learned from Real-Life Implementation

2017-04-11
2017-01-9076
The aim of this paper is to introduce a complete fast dynamic inductive charging infrastructure from the back-office system (EV management system) up to the Electric Vehicle (EV) (inductive power transfer module, positioning mechanism, electric vehicle modifications) and the EV user (User interface). Moreover, in order to assess the impact of the additional demand of inductive charging on the grid operation, an estimation of the 24-hour power profile of dynamic inductive charging is presented considering, apart from the road traffic, the probability of the need for fast charging, as well as the specifications of the proposed solution. In addition, an energy management system is presented enabling the management of the operation of the inductive charging infrastructure, the interaction with the EV users and the provision of demand response services to different stakeholders.
Technical Paper

Design Features of an Innovative Synchronous Reluctance Machine for Battery Electric Vehicles Applications

2016-04-05
2016-01-1235
The widespread of hybrid and battery electric vehicles is vital for the future of low-carbon mobility. In this context the delivery of affordable and efficient electric motor technologies together with high energy density storage devices are key aspects to enable the mass market take-off of electrified vehicles. The objective of this paper is to provide the scientific community with the results and design features of an innovative and rare-earth free electric motor technology based on the synchronous reluctance machine concept. This technology is capable to provide sufficient power density and higher driving cycle energy efficiency compared to the current state-of-the-art rare-earth permanent magnet synchronous machines used for automotive applications. The motor is designed to be integrated within a hatchback rear driving axle vehicle, achieving the maximum energy efficiency in urban operational conditions.
X