Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Improving the Sound Transmission Loss of an Aircraft Ceiling Panel by Locally Resonant Metamaterials

2022-06-15
2022-01-0960
Lightweight structures and designs have been widely used in a number of engineered structures due to ecological and environmental aspects. Nonetheless, lightweight structures typically experience a reduced noise and vibration reduction performance as a consequence of their increased stiffness-to-mass-ratio. To enhance it, novel low mass and compact countermeasures are often sought to address the challenges of achieving not only a good Noise, Vibrations and Harshness (NVH) reduction performance but also maintaining a lightweight design. Recently, locally resonant metamaterials have emerged and shown potential as a lightweight noise and vibration solution with a superior performance in tunable frequency ranges, known as stop bands i.e. frequency regions where free wave propagation is not allowed. These can be achieved by assembling resonant elements that are tuned to the targeted frequency range onto a host structure.
Journal Article

Reduction of Structure-Borne Tyre/Road Noise through Rubber Resonant Metamaterials in Tyres

2022-06-15
2022-01-0954
This paper demonstrates the application of a resonant metamaterial concept to tyres in order to reduce structure-borne tyre/road noise. Special attention is given to the frequency range around 220Hz, containing the first acoustic tyre resonances. These resonances are known to transmit high forces to the wheel-knuckle, leading to structural energy propagating into the vehicle’s body and, consequently, causing a tonal noise issue in the vehicle compartment. By adding recycled rubber resonant elements to the inner liner of the tyre, structural stop band behaviour is achieved in the frequency band of interest. Hence, structural vibrations in the tyre are reduced, resulting in a reduction of the excitation of the first acoustic tyre resonances and, consequently, a mitigation of the transmitted forces to the wheel-knuckle. First, the stop band behaviour is designed via unit cell modelling of a section of a tyre mock-up that only accounts for its structural behaviour.
Journal Article

Coupling of Component Models with Mismatching Interfaces for an Efficient NVH Vehicle Design

2022-06-15
2022-01-0977
The NVH optimization of new vehicle models can in principle only be carried out in a relatively late stage of the development process, when the geometrical data (CAD) are available and can be used to generate detailed Finite Element (FE) models of the car body. Unfortunately, in this stage of the development process most of the geometrical data are already fixed and countermeasures are limited and expensive. In order to be able to evaluate design concepts in an earlier conceptual stage of the development process existing models of similar predecessor vehicles must be used leading to techniques such as “mesh-morphing” or “concept modelling” (see for instance [1, 2]). Here, a different approach is investigated based on a substructuring technique.
Technical Paper

Prediction of Internal Responses Due to Changes in Boundary Conditions Using System Frequency Response Functions

2021-08-31
2021-01-1058
Vibration testing is often carried out for automotive components to meet guidelines based on their operational environments. This is an iterative process wherein design changes may need to be made depending on an intermediate model’s dynamic behavior. Predicting the behavior based on modifications in boundary conditions of a well-defined numerical model imparts practical insights to the component’s responses. To this end, application of a general method using experimental free-free condition frequency response functions of a structure is discussed in the presented work. The procedure is shown to be useful for prediction of responses when kinematic boundary conditions are applied, without the need for an actual measurement. This approach is outlined in the paper and is applied to datasets where dynamic modifications are made at multiple boundary nodes.
Technical Paper

Inverse Reconstruction of the Spatial Distribution of Dynamic Tire-Road Contact Forces in Time Domain Using Impulse Response Matrix Deconvolution for Different Measurement Types

2021-08-31
2021-01-1061
In tire development, the dynamic tire-road contact forces are an important indicator to assess structure-borne interior cabin noise. This type of noise is the dominant source in the frequency range from 50-450 Hz, especially when rolling with constant angular velocity on a rough road. The spatial force distribution is difficult or sometimes even impossible to simulate or measure in practice. So, the use of an inverse technique is proposed. This technique uses response measurements in combination with a digital twin simulation model to obtain the input forces in an inverse way. The responses and model properties are expressed in the time domain, since it is specifically aimed to trace back the impact locations from road surface texture indents on the tire. In order to do so, the transient responses of the travelling waves as a result of these impacts is used. The framework expresses responses as a convolution product of the unknown loads and impulse response measurements.
Journal Article

High-Speed Camera based Experimental Modal Analysis for Dynamic Testing of an Automotive Coil Spring

2021-08-31
2021-01-1119
Experimental modal analysis (EMA) is a measurement technique to assess the dynamical properties of mechanical components and systems in various phases of their life cycle, e.g. for design, end-of-line testing and health monitoring. The most common EMA uses accelerometers, which provide high frequency acceleration measurements at a few discrete locations. However, attached accelerometers may alter the systems mass and damping properties and multiple tests are required to obtain spatially dense information. To overcome these issues, in this paper we use high-speed cameras and video processing algorithms. In fact, cameras as contact-less sensors do not modify the dynamics of the system under test. Furthermore, cameras provide full-field displacement data, allowing to obtain spatially dense transfer functions with a single excitation, which reduces the experiment duration.
Technical Paper

Reducing Vehicle Interior NVH by Means of Locally Resonant Metamaterial Patches on Rear Shock Towers

2019-06-05
2019-01-1502
Stringent regulations for CO2 emissions and noise pollution reduction demand lighter and improved Noise, Vibration Harshness (NVH) solutions in automotive industries. Designing light, compact and, at the same time, improved NVH solutions is often a challenge, as low noise and vibration levels often require heavy and bulky additions, especially to be effective in the low frequency regime. Recently, locally resonant metamaterials have emerged among the novel NVH solutions because of their performant NVH properties combined with lightweight and compact design. Due to the characteristic of stop band behavior, frequency ranges where free wave propagation is inhibited, metamaterials can beat the mass law, be it at least in some tunable frequency ranges. Previously the authors demonstrated how metamaterials can reduce the vibrations in a simplified shock tower upon shaker excitation. In this work, the authors apply the metamaterial concept on the real rear shock towers of a vehicle.
Technical Paper

Multi-Body Model of a Fixed-Wing Large Passenger Aircraft for Nonlinear State Estimation

2015-09-15
2015-01-2585
This paper proposes a solution for utilizing multi-body models in nonlinear state observers, to directly estimate the loads acting on the aircraft structure from measurement data of sensors that are commonly available on modern aircraft, such as accelerometers on the wing, rate gyros and strain gages. A high-fidelity aeroelastic multi-body model of a fixed-wing large passenger aircraft is presented, suitable for the monitoring of landing maneuvers. The model contains a modally reduced flexible airframe and aerodynamic forces modeled with a doublet-lattice method. In addition, detailed multi-body models of the nose and main landing gear are attached to the flexible structure, allowing to accurately capture the loads during a hard landing event. It is expected that this approach will make way for embedding non-linear multi-body models, with a high number of degrees of freedom, in state estimation algorithms, and hence improve health monitoring applications.
X