Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

A Zero-Dimensional Velocity-Composition-Frequency Probability Density Function Model for Compression-Ignition Engine Simulation

2020-04-14
2020-01-0659
Numerical simulation of in-cylinder processes can significantly reduce the development and refinement costs of engines. While it can be argued that higher fidelity models improve accuracy of prediction, it comes at the expense of high computational cost. In this respect, a 3D analysis of in-cylinder processes may not be feasible for evaluating large number of design and operating conditions. The situation can be more foreboding for transient simulations. In the current work a phenomenological combustion modeling approach is explored that can be implemented in a lower fidelity modeling framework and can approach the accuracy of higher dimensional models with significant reduction in computational cost. The proposed model uses transported probability density function (tPDF) method within a 0D framework to provide a computationally efficient solution while capturing the essential physics of in-cylinder combustion.
Journal Article

Development of a K-k-∊ Phenomenological Model to Predict In-Cylinder Turbulence

2017-03-28
2017-01-0542
The turbulent flow field inside the cylinder plays a major role in spark ignition (SI) engines. Multiple phenomena that occur during the high pressure part of the engine cycle, such as early flame kernel development, flame propagation and gas-to-wall heat transfer, are influenced by in-cylinder turbulence. Turbulence inside the cylinder is primarily generated via high shear flows that occur during the intake process, via high velocity injection sprays and by the destruction of macro-scale motions produced by tumbling and/or swirling structures close to top dead center (TDC) . Understanding such complex flow phenomena typically requires detailed 3D-CFD simulations. Such calculations are computationally very expensive and are typically carried out for a limited number of operating conditions. On the other hand, quasi-dimensional simulations, which provide a limited description of the in-cylinder processes, are computationally inexpensive.
X