Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Robust Structure Analysis on Automotive Door Armrest

2019-01-09
2019-26-0006
An automobile door is one vital commodity which has its role in vehicle’s function, strength, safety, dynamics and aesthetic parameters. The door system comprises of individual components and sub-assemblies such as door upper, bolster, armrest, door main panel, map-pocket, handle, speaker and tweeter grille. Among them, armrest is an integral part which provides function and also takes care of some safety parameter for the customers. The basic function of an armrest is to provide ergonomic relief to occupant for resting his hand. Along with this, it also facilitates occupant safety during a side impact collision by absorbing the energy and not imparting the reactive force on occupant. Thus an armrest has evolved as a feature of passive safety. The armrest design should be stiff enough to withstand required elbow load condition with-in the acceptable deflection criteria. On the other hand, armrest has to absorb the dynamic force by deflecting proportionally to the side impact load.
Technical Paper

Optimization of Center Console Duct Using Robust Assessment Methodology

2018-04-03
2018-01-0072
The thermal comfort for the passenger inside the cabin is maintained by the HVAC system. To ensure a comfort for the 2nd row passengers in the cabin, it is very essential to design an efficient HVAC and rear console duct system which can deliver sufficient airflow with less pressure drop. The primary focus of the study is to assess existing airflow of the center console duct using CFD and propose improvement in its duct shape to meet the passenger comfort sitting in the rear seat. In this study, the vehicle cabin model, HVAC system and duct design was modeled using the design software UG. To analyze and estimate the behavior of the air flow of the system, a steady state simulation was performed using STAR CCM CFD software. The performance of the console duct system is judged by parameters like distribution of airflow, velocity at console duct outlet, pressure drop through the duct and the uniformity of the air flow at the passenger locations.
Technical Paper

HVAC System Bench Test Analysis for TXV Tuning

2018-04-03
2018-01-0070
In today’s automotive industry, the A/C (Air-conditioning) system is emerging into a high level of technological growth to provide quick cooling, warm up and maintaining the air quality of the cabin during all-weather conditions. In HVAC system, TXV plays vital role by separating high side to low side of vapor compression refrigeration system. It also regulates the amount of refrigerant flow to the evaporator based on A/C system load. The HVAC system bench laboratory conducts the test at different system load conditions to evaluate the outputs from tests during initial development stage to select the right TXV in terms of capacity and Superheat set point for a given system. This process is critical in HVAC developmental activity, since mule cars will be equipped with selected TXV for initial assessment of the system performance.
Technical Paper

A Novel Approach to Plug-In Hybrid Electric Vehicle Coolant System Modeling

2018-04-03
2018-01-1189
EPA 2017-2025 regulations have increased the corporate average fuel economy (CAFE) requirement by 33% for 2025 model year vehicles. Similarly, the EU has set a target of reducing CO2 emission by 27% (with respect to 2015 targets) for vehicles launching after 2021. These constraints have diverted the attention of most of the OEMs towards hybrid electric vehicles, which give out lower emissions and have higher fuel economy as compared to the vehicles propelled by an IC engine. Hence, many automakers have started working on plug-in hybrid electric (PHEV) variants of the existing vehicle models. Vehicle architecture of a PHEV consists of additional electrical components apart from the conventional coolant consumers. The coolant flow requirements to all these additional components becomes challenging for its efficient operation and coolant flow balancing.
Technical Paper

Simulation-Driven Approach to Design & Evaluate Vehicle Thermal Management

2018-04-03
2018-01-1183
In today’s automobile industries to improve the fuel economy lots of weight reduced in all the systems of the vehicle, particularly in the engine cooling system. Due to the lighter weight engine cooling systems, the vehicles might face many temperature challenges and sustainability issues. The automotive cooling system has unrealized potential to improve internal combustion engine performance through enhanced coolant temperature control and reduced parasitic losses. The idea of this work is to validate the downsized heat exchanger to use in an optimal engine cooling module without compromising the functional requirements. For this study a plug-in hybrid electric vehicle (PHEV) engine internal cooling system is modelled in GT-SUITE®. The PHEV cooling network comprises of high temperature (HT) loop, low temperature loop (LT) loop and the battery loop.
Technical Paper

Static Loading Analysis of Third Row Floor Duct System Using Finite Element Method

2017-03-28
2017-01-0168
In current scenario, there is an increasing need to have faster product development and achieve the optimum design quickly. In an automobile air conditioning system, the main function of HVAC third row floor duct is to get the sufficient airflow from the rear heating ventilating and air-conditioning (HVAC) system and to provide the sufficient airflow within the leg locations of passenger. Apart from airflow and temperature, fatigue strength of the duct is one of the important factors that need to be considered while designing and optimizing the duct. The challenging task is to package the duct below the carpet within the constrained space and the duct should withstand the load applied by the passenger leg and the luggage. Finite element analysis (FEA) has been used extensively to validate the stress and deformation of the duct under different loading conditions applied over the duct system.
Technical Paper

A DFSS Approach to Optimize the Second Row Floor Duct Using Parametric Modelling

2017-03-28
2017-01-0176
The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Computational fluid dynamics analysis (CFD) has been used extensively to optimize system performance and shorten the product development time. In this methodology, a parametric modeling of floor duct design using the factors such as crossectional area, duct length, insulation type, insulation thickness and thickness of duct were created using CATIA. L12 orthogonal design array matrix has been created and the 3D CFD analysis has been carried out individually to check the velocity and temperature.
Technical Paper

Robust 1D Modelling for Automotive HVAC Warmup Prediction Using DFSS Approach

2017-03-28
2017-01-0179
In an automotive air-conditioning (AC) system, the heater system plays a major role during winter condition to provide passenger comforts as well as to clear windshield defogging and defrost. In order to meet the customer satisfaction the heater system shall be tested physically in severe cold conditions to meet the objective performance in wind tunnel and also subjective performance in cold weather regions by conducting on road trials. This performance test is conducted in later stage of the program development, since the prototype or tooled up parts will not be available at initial program stage. The significance of conducting the virtual simulation is to predict the performance of the HVAC (Heating ventilating air-conditioning) system at early design stage. In this paper the development of 1D (One dimensional) model with floor duct systems and vehicle cabin model is studied to predict the performance. Analysis is carried out using commercial 1D simulation tool KULI®.
Technical Paper

Cool Down Analysis of an HVAC System Using Multi-Zone Cabin Approach

2017-03-28
2017-01-0182
Cool down of a passenger vehicle cabin is a preferred method to test the efficiency of the vehicle HVAC (Heating, Ventilation and Air Conditioning) system. The intended primary objective of a passenger vehicle air conditioning system is to ensure thermal comfort to the passengers seated inside at all prevailing conditions. Presently 1-D analysis plays a major role in determining the conformation of the selected system to achieve the desired results. Virtual analysis thus saves a lot of time and effort in predicting the system performance in the initial development phase of the vehicle HVAC systems. A variety of parameters play an important role in achieving the above thermal comfort. Thermal comfort is measured using the Human comfort sensor for all the passengers seated inside.
Technical Paper

A Novel Approach to Optimize the Resonators for Air Induction System

2016-04-05
2016-01-1320
The Air Induction system (AIS) must provide sufficient and clean air to the engine for its desired combustion thus enhancing engine performance. The critical functions which effect the performance are pressure restriction and acoustic performance. The ideal design of AIS effectively reduces the engine noise heard at snorkel, which contributes to the cabin noise. Good acoustic expertise and several tests are required to optimize the design of AIS. Multiple resonators are commonly used in passenger cars to attenuate the noise. This paper emphasize on One Dimensional (1D) approach to optimize the resonators in the AIS to meet the functional requirements. In AIS, the flow happens from the snorkel to the engine air intake whereas the engine noise propagates in the opposite direction. The unsteady mass flow through the intake valves causes pressure fluctuations in the intake manifold and these propagate to intake orifice and are radiated as noise which is heard at snorkel.
Technical Paper

Optimization of Muffler Acoustics Performance using DFSS Approach

2016-04-05
2016-01-1292
Noise pollution is a major concern for global automotive industries which propels engineers to evolve new methods to meet passenger comfort and regulatory requirements. The main purpose of an exhaust system in an automotive vehicle is to allow the passage of non-hazardous gases to the atmosphere and reduce the noise generated due to the engine pulsations. The objective of this paper is to propose a Design for Six Sigma (DFSS) approach followed to optimize the muffler for better acoustic performance without compromising on back pressure. Conventionally, muffler design has been an iterative process. It involves repetitive testing to arrive at an optimum design. Muffler has to be designed for better acoustics performance and reduced back pressure which complicates the design process even more.
Technical Paper

Optimization Solutions for Fan Shroud

2016-04-05
2016-01-1393
Fan shroud is one of the critical components in an engine cooling system. It helps in achieving optimum air flow across the heat exchangers. The major challenge is to design a fan shroud which meets noise, vibration and harshness (NVH) requirements without compromising on air flow targets [1]. An improperly designed fan shroud will cause detrimental effects such as undesirable noise and vibration, which will further damage the surrounding components. In current days, multiple simulations and test iterations are carried out in order to optimize its design. The objective of this paper is to provide a design framework to achieve optimized fan shroud that meets NVH requirements in quick turnaround time using Design for Six Sigma (DFSS) approach [2]. The purpose of the Engine cooling system is to maintain the coolant temperature across the vehicle.
Technical Paper

A Novel Approach to Predict HVAC Noise Using 1D Simulation

2016-04-05
2016-01-0249
In recent years reducing the automobile HVAC (Heating Ventilation and automobile conditioning) noise inside the vehicle cabin is one of the main criterions for all OEMs to provide comfort level to the passengers. The primary function of the HVAC is to deliver more air to the cabin with less noise generation for various blower speeds. Designing the optimum HVAC with less noise is one of the major challenges for all automotive manufacturers and HVAC suppliers. During the design stage, physical parts are not available and hence the simulation technique helps to evaluate the noise level of HVAC. In this study, a computational 1D (one dimensional) analysis is carried out to compute the airflow noise originated from the HVAC unit and propagated to the passenger cabin. Modeling has been done using unigraphics and the analysis is carried out using the commercial 1D software GT suite.
Technical Paper

Studies on Aero-Acoustics Noise Prediction of MAC Unit Using Computational Modelling

2016-04-05
2016-01-0218
In an automotive air conditioning, aero-acoustic noise originating from HVAC (Heating Ventilation and Air Conditioning) unit is one of the major concerns for the customer satisfaction. “Fan blower excessive noise” is one among the top issues for all automotive manufacturers. In this paper, a 3D computational analysis is carried out for a passenger car HVAC unit to predict the noise originated from the HVAC unit. HVAC modeling is done using uni graphics and ANSA and the analysis is carried out using the commercial CFD software STAR CCM+. The inputs for the analysis are the airflow at HVAC Inlet, blower speed and the pressure drop characteristics of evaporator, filter and heater core. The computational model is done by considering the blower region as MRF (Moving Reference Frame) and the air flow is considered incompressible. DES (Detached Eddy Simulation) model is used to resolve the eddies generated by the turbulent flow.
Technical Paper

Studies on Purge Noise Reduction in Vapor Line using 1D Simulation

2016-02-01
2016-28-0239
Noise reduction is a major concern in the recent times and global automotive industries evolve new technology to meet the norms. The major contribution to vehicle’s interior noise is from engine, intake, exhaust, structure, aerodynamic and road. In recent days, more attention is given to other sources of noises which are dominant. Purge noise is one such noise which has more impact to the interior noise because the cabin has become much quieter due to the latest advancements and new technologies used in vehicle design and development. Using the air dampening device in the vapor line is one of the techniques to minimize the purge noise. In this paper a study is carried out in order to optimize the design of air dampening device which meets the requirements. Fuel vapors that got collected in canister will purge through vapor line and are controlled by purge valve before they enter the engine.
Technical Paper

A Novel Approach for Flow Simulation and Back Pressure Prediction of Cold End Exhaust System

2016-02-01
2016-28-0235
The performance of any automotive engine depends not only upon its core engine parts but also on the effectiveness of the sub-systems attached to the engine, like the intake, fuel, engine cooling and exhaust systems. The exhaust system being a critical system of any automotive vehicle plays a responsible role of improving the ride quality of the vehicle and fuel economy. The effective design of exhaust system is critical in order to ensure the required exhaust gas is exited from the engine and at the same time the noise is attenuated. In this paper a novel approach is developed in order to characterize the flow through the cold end exhaust system and reduce the pressure drop to achieve desired performance. The exhaust system attenuates the noise from the engine without deteriorating the engine performance by ensuring an optimum value of exhaust back pressure.
Technical Paper

Optimization of MAC Side Window Demister Outlet by Parametric Modelling through DFSS Approach

2015-04-14
2015-01-0363
In recent years clearing the mist on side windows is one of the main criterions for all OEMs for providing comfort level to the person while driving. Visibility through the side windows will be poor when the mist is not cleared to the desired level. “Windows fog up excessively/don't clear quickly” is one of the JD Power question to assess the customer satisfaction related to HVAC performance. In a Mobile Air Conditioning System, HVAC demister duct and outlet plays an important role for removing the mist formation on vehicle side window. Normally demister duct and outlet design is evaluated by the target airflow and velocity achieved at driver and passenger side window. The methodology for optimizing the demister outlet located at side door trim has been discussed. Detailed studies are carried out for creating a parametric modeling and optimization of demister outlet design for meeting the target velocity.
X