Refine Your Search

Search Results

Author:
Technical Paper

Boundary Layer and Heat Transfer Characterization on a Flat Plate with Realistic Ice Roughness

2015-06-15
2015-01-2096
Numerical simulation of ice accretion on aircraft surfaces necessitates a good prediction of wall friction coefficient and wall heat transfer coefficient. After the icing process begins, surface roughness induces a high increase of friction and heat transfer, but simple Reynolds analogy is no longer valid. An experimental campaign is conducted to provide a database for numerical model development in the simple configuration of a heated flat plate under turbulent cold airflow conditions. The flat plate model is placed in the centre of the test section of a wind tunnel. The test model is designed according to constraints for the identification of friction and heat transfer coefficients. It includes three identical resin plates which are moulded to obtain a specified roughness on the upper surface exposed to the flow. Only the 3rd resin plate is heated on its lower face by an electrical heater connected to a temperature regulator.
X