Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Effect of Natural Gas Composition and Rail Pressure on Injector Performance

2024-01-16
2024-26-0079
The demand for Compressed Biogas (CBG) as an alternative fuel to Compressed Natural Gas (CNG) is rapidly increasing due to its renewable nature and environmental benefits. However, CBG and H-CNG has variations in gas composition standards as compared to CNG, which may require hardware changes in fuel system to adapt to these variations while ensuring the same performance. Fuel delivery system of CNG vehicle comprises of fuel storage tank, fuel delivery circuit, pressure regulator, fuel rail and injector. Performance of a fuel injector and pressure regulator are critical factors in the efficient and effective delivery of gaseous fuel to engine. This paper theoretically examines fuel flow requirement of injectors with different gas compositions such as CNG, CBG, G25, G20, H-CNG and taking in consideration other factors impacting overall performance.
Technical Paper

Resonator Design Study to Reduce Pressure Pulsation from CNG Injector

2024-01-16
2024-26-0233
With the advent of upcoming stringent automobile emission norms globally, it is inevitable for original equipment manufacturers (OEMs) to shift towards greener alternatives. Use of compressed natural gas (CNG) is a preferred solution as it is a relatively clean burning fuel and it doesn’t have significant loss in vehicle efficiency and performance. Modern day customers are more aware and sensitive towards vehicle noise, vibration and harshness (NVH). Hence, OEMs must cater to this demand through optimized design and layout. In a passenger vehicle, CNG is stored at high pressure and delivered to injectors after pressure reduction at a regulator. During engine idling, the opening and closing motion of the CNG injector generates back pulsation and these pulsations cause vibrations which may propagate through other components in the delivery path and perceived as noise inside vehicle cabin.
Journal Article

OEM's Approach on Design and Evaluation of Plastic Clamps

2017-03-28
2017-01-0484
The automotive industry, known for its competitiveness & innovations globally, researches for continuous improvement of part performances along with reduction of cost & weight. These are amongst the top priority goals across all OEMs. In the long list of automobile parts, pipe clamps have paved their way of design through generations from being of metal to plastic that has expanded its scope of application & performance. In an automobile, plastic clamps are widely used to hold single or multiple water, fuel or brake pipes of various diameters to vehicle body at various locations such as underbody (prone to stone chipping) or engine room (prone to high temperatures), etc. Plastic clamps are preferred over metallic clamps for their cost, weight, performance & productivity. Primarily, in all application areas, a clamp must be able to hold the pipes with consistent & sufficient performance that is quantified through parameters such as thrust force and pipe removal force.
X