Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Agile and Low-Cost Experimental Evaluation of Fuel Consumption Reduction of a New Electrified Clutch Transmission Virtually Connected to a Vehicle

2017-03-28
2017-01-1096
Automated Manual Transmission (AMT) based on classic electrohydraulic clutch actuation gives high performances and comfort to a recreational vehicle. However, overall power consumption remains high due to the pump efficiency. In addition, the pump is often driven by the vehicle’s engine and thus is continuously working. To address this issue, a new electrified clutch based on electromechanical actuation has been designed and prototyped. In order to evaluate the effective fuel consumption reduction using this new clutch actuator, a low-cost and agile method is presented and used in this paper. Indeed, instead of integrating the clutch actuator in a real vehicle and performing expensive real emission test cycles on a road, this original method proposes to perform accurate semi-virtual emission test cycles. Moreover, the method allows to perform numerous test iterations in a short time.
Journal Article

Design and Experimental Demonstration of a Seamless Automated Manual Transmission using an Eddy Current Torque Bypass Clutch for Electric and Hybrid Vehicles

2016-05-01
2015-01-9144
Electric Vehicles (EVs) with single-ratio gearbox provide high levels of smoothness, but using multi-speed gearbox can provide significant benefits in terms of vehicle acceleration, top speed, powertrain cost, mass, and energy consumption. In particular, Automated Manual Transmissions (AMTs) have characteristics of smooth shifts without torque interruption when coupled to a torque bypass clutch. However, conventional friction clutches are not best suited as torque bypass clutches because of their limited controllability and because large amount of heat must be dissipated to slow down the motor during gearshifts. This paper studies the feasibility of a seamless AMT architecture for EVs and Hybrid Electric Vehicles (HEVs) using an eddy current torque bypass clutch that is highly controllable, robust, low cost, and has no wearable parts.
Journal Article

Design of an Eddy Current Torque Bypass Clutch for Seamless Automated Manual Transmissions of Electric and Hybrid Vehicles

2015-07-01
2015-01-9143
This paper presents the design and experimental validation of an eddy current torque transfer clutch for use inside Automated Manual Transmissions (AMTs) to perform seamless gear upshifts. Electric vehicles (EVs) with a single-ratio gearbox may provide high levels of smoothness, but using a multi-speed gearbox provides significant benefits in terms of vehicle acceleration, top speed, powertrain cost, mass, and energy consumption. AMTs can provide smooth shifts without torque interruption when coupled to a normally-open torque bypass clutch. However, conventional dry friction clutches are not best suited for such torque bypass due to wear and controllability concerns, while wet clutches would decrease powertrain efficiency due to viscous losses. An eddy current clutch would be highly controllable, simple to manufacture, low-cost, robust, and do not wear compared to friction clutches.
X