Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Effects of Moving Ground and Rotating Wheels on Aerodynamic Drag of a Two-Box Vehicle

2018-04-03
2018-01-0730
Previous studies and recent practical aerodynamic evaluations have shown that aerodynamic drag of passenger vehicles with “ground simulation” with moving ground and rotating wheels may increase in some cases and decrease in other cases relative to the fixed ground and stationary wheel conditions. Accordingly, the effects of the ground simulation on the aerodynamic drag should be deeply understood for further drag reduction. Although the previous studies demonstrated what is changed by the ground simulation, the reason for the change has not been fully understood. In this article, the effects of wheels and wheel houses attachment and those by the ground simulation with ground movement and wheel rotation on the aerodynamic drag were investigated by quantification of the underfloor flow that plays a crucially important role on the formation of vortical structure around vehicles.
Technical Paper

Prediction of Aeroacoustical Interior Noise of a Car, Part-2 Structural and Acoustical Analyses

2016-04-05
2016-01-1616
One-way coupled simulation method that combines CFD, structural and acoustical analyses has been developed aiming at predicting the aeroacoustical interior noise for a wide range of frequency between 100 Hz and 4 kHz. Statistical Energy Analysis (SEA) has been widely used for evaluating transmission of sound through a car body and resulting interior sound field. Instead of SEA, we directly computed vibration and sound in order to investigate and understand propagation paths of vibration in a car body and sound fields. As the first step of this approach, we predicted the pressure fluctuations on the external surfaces of a car by computing the unsteady flow around the car. Secondly, the predicted pressure fluctuations were fed to the subsequent structural vibration analysis to predict vibration accelerations on the internal surfaces of the car.
Technical Paper

Prediction of Aeroacoustical Interior Noise of a Car, Part-1 Prediction of Pressure Fluctuations on External Surfaces of a Car

2016-04-05
2016-01-1617
A wall-resolving Large Eddy Simulation (LES) has been performed by using up to 40 billion grids with a minimum grid resolution of 0.1 mm for predicting the exterior hydrodynamic pressure fluctuations in the turbulent boundary layers of a test car with simplified geometry. At several sampling points on the car surface, which included a point on the side window, the door panel, and the front fender panel, the computed hydrodynamic pressure fluctuations were compared with those measured by microphones installed on the surface of the car in a wind tunnel, and effects of the grid resolution on the accuracy of the predicted frequency spectra were discussed. The power spectra of the pressure fluctuations computed with 5 billion grid LES agreed reasonably well with those measured in the wind tunnel up to around 2 kHz although they had some discrepancy with the measured ones in the low and middle frequencies.
Journal Article

Identification of Vortical Structure that Drastically Worsens Aerodynamic Drag on a 2-Box Vehicle using Large-scale Simulations

2016-04-05
2016-01-1585
It is important to reduce aerodynamic drag for reducing fuel consumption. Conventionally reduction of aerodynamic drag has been carried out by shape optimization of each part of a vehicle based on the investigations of the time-averaged flows around the vehicle. However, the general tendency of drag reduction has been saturated recently and it is required to develop a new flow-control technique to achieve further reduction in aerodynamic drag. We therefore focus on the unsteadiness of the flow around a vehicle to achieve it because the aerodynamic drag of a vehicle fluctuates over time due to repetitions of generation, growth, merging and disappearance of various sizes of vortices around it. These vortices are formed by flow separations, for which the longitudinal coherent vortices inside turbulent boundary layers on vehicle surfaces are presumably playing an important role.
X