Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

An Experimental Study on Diesel Spray Injection into a Non-Quiescent Chamber

2017-03-28
2017-01-0850
Visualization of single-hole nozzles into quiescent ambient has been used extensively in the literature to characterize spray mixing and combustion. However in-cylinder flow may have some meaningful impact on the spray evolution. In the present work, visualization of direct diesel injection spray under both non-reacting and reacting operating conditions was conducted in an optically accessible two-stroke engine equipped with a single-hole injector. Two different high-speed imaging techniques, Schlieren and UV-Light Absorption, were applied here to quantify vapor penetration for non-reacting spray. Meanwhile, Mie-scattering was used to measure the liquid length. As for reacting conditions, Schlieren and OH* chemiluminescence were simultaneously applied to obtain the spray tip penetration and flame lift-off length under the same TDC density and temperature. Additionally, PIV was used to characterize in-cylinder flow motion.
Technical Paper

Characterization of Internal Flow of Intersecting Hole Nozzle for Diesel Engines

2015-09-01
2015-01-1860
The intersecting hole nozzle, in which each orifice is formed by the converging of two or more child-holes, was proposed for the purpose of enhancing the internal turbulence in diesel nozzle, so as to promote the fuel atomization. In this paper, the internal flow characteristics of a cylindrical hole nozzle and two intersecting hole nozzles are studied by CFD simulation. The results show that, compared with conventional cylindrical hole nozzle, the internal flow of intersecting hole nozzles is characterized with slower rate of pressure decrease in the hole, none or very little cavitation, as well as about 20% to 30% higher discharge coefficients, especially under conditions of high injection pressure. Additionally, the setting of the blind hole as a disturbing domain in the intersecting hole nozzle results in more perturbation for internal flow, which will be beneficial for fuel atomization.
X