Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Snow Effects on the NGCTR Nacelle for Relevant Certification Conditions

2023-06-15
2023-01-1373
This paper is focused on the numerical analysis of the impingement and water catch rate of snow particles on the engine air intake of the Next Generation Civil Tilt Rotor (NGCTR). This NGCTR is developed by Leonardo Helicopters. The collection efficiency and water catch rate for the intake geometry are obtained for the test cases that have been defined for the relevant snow conditions. These conditions are related to the flight envelope of the NGCTR, existing EASA/FAA certification specifications, and the snow characterization. The analyses have been performed for the baseline air intake geometry. A range of particle diameters has been simulated with a particle density equal to the density of ice and with a particle drag relation that disregards the particle shape.
Technical Paper

Modelling of Non-Spherical Particle Evolution for Ice Crystals Simulation with an Eulerian Approach

2015-06-15
2015-01-2138
In this study a comparison is made between results from three Eulerian-based computational methods that predict the ice crystal trajectories and impingement on a NACA-0012 airfoil. The computational methods are being developed within CIRA (Imp2D/3D), ONERA (CEDRE/Spiree) and University of Twente (MooseMBIce). Eulerian models describing ice crystal transport are complex because physical phenomena, like drag force, heat transfer and phase change, depend on the particle's sphericity. Few correlations exist for the drag of non-spherical particles and heat transfer of these particles. The effect or non-spherical particles on the collection efficiency will be shown on a 2D airfoil.
Technical Paper

Computational Method for Ice Crystal Trajectories in a Turbofan Compressor

2015-06-15
2015-01-2139
In this study the characteristics of ice crystals on their trajectory in a single stage of a turbofan engine compressor are determined. The particle trajectories are calculated with a Lagrangian method employing a classical fourth-order Runge-Kutta time integration scheme. The air flow field is provided as input and is a steady flow field solution governed by the Euler equations. The single compressor stage is represented using a cascaded grid. The grid consists of three parts of which the first and the last part are stator parts and the centre part is a rotor. Each particle is modelled as a non-rotating rigid sphere. The remaining model does allow the exchange of heat and mass to and from the particle resulting in a mass, temperature and phase change of the particle. The phase change is based on a perfectly concentric ice core-water film model and it is assumed that the particle is at uniform temperature.
X