Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Snow Particle Characterization. Part A: Statistics of Microphysical Properties of Snow Crystal Populations from Recent Observations Performed during the ICE GENESIS Project

2023-06-15
2023-01-1492
Measurements in snow conditions performed in the past were rarely initiated and best suited for pure and extremely detailed quantification of microphysical properties of a series of microphysical parameters, needed for accretion modelling. Within the European ICE GENESIS project, a considerable effort of natural snow measurements has been made during winter 2020/21. Instrumental means, both in-situ and remote sensing were deployed on the ATR-42 aircraft, as well as on the ground (ground station at ‘Les Eplatures’ airport in the Swiss Jura Mountains with ATR-42 overflights). Snow clouds and precipitation in the atmospheric column were sampled with the aircraft, whereas ground based and airborne radar systems allowed extending the observations of snow properties beyond the flight level chosen for the in situ measurements.
Technical Paper

Assessing Mixed-Phase Conditions during the ICE GENESIS Snow Measurement Campaign

2023-06-15
2023-01-1494
In the framework of the European ICE GENESIS project (https://www.ice-genesis.eu/), a field experiment was conducted in the Swiss Jura in January 2021 in order to characterize snow microphysical properties and document snow conditions for aviation industry purposes. Complementary to companion papers reporting on snow properties, this study presents an investigation on mixed-phase conditions sampled during the ICE GENESIS field campaign. Using in situ measurement of the liquid and total water content, the ice mass fraction is calculated and serves as a criteria to identify mixed-phase conditions. In the end, mixed phase conditions were identified in almost 30 % of the 3800 km long cloud samples included in the ICE GENESIS dataset. The data suggests that the occurrence of mixed-phase does not clearly depend on temperature in the 0 to -10 °C range, but varies significantly from one cloud system to another.
Technical Paper

Overview of the HAIC “Space-borne Observation and Nowcasting of High Ice Water Content Regions” Sub-Project and Mid-Term Results

2015-06-15
2015-01-2123
The High Altitude Ice Crystals (HAIC) Sub-Project 3 (SP3) focuses on the detection of cloud regions with high ice water content (IWC) from current available remote sensing observations of space-based geostationary and low-orbit missions. The SP3 activities are aimed at supporting operationally the two up-coming HAIC flight campaigns (the first one in May 2015 in Cayenne, French Guyana; the second one in January 2016 in Darwin, Australia) and ultimately provide near real-time cloud monitoring to Air Traffic Management. More in detail the SP3 activities focus on the detection of high IWC from space-borne geostationary Meteosat daytime imagery, explore the synergy of concurrent multi-spectral multiple-technique observations from the low-orbit A-Train mission to identify specific signatures in high IWC cloud regions, and finally develop a satellite-based nowcasting tool to track and monitor convective systems over the Tropical Atlantic.
Technical Paper

HAIC/HIWC Field Campaign - Specific Findings on PSD Microphysics in High IWC Regions from In Situ Measurements: Median Mass Diameters, Particle Size Distribution Characteristics and Ice Crystal Shapes

2015-06-15
2015-01-2087
Despite past research programs focusing on tropical convection, the explicit studies of high ice water content (IWC) regions in Mesoscale Convective Systems (MCS) are rare, although high IWC conditions are potentially encountered by commercial aircraft during multiple in-service engine powerloss and airdata probe events. To gather quantitative data in high IWC regions, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including a first field campaign conducted out of Darwin (Australia) in 2014. The airborne instrumentation included a new reference bulk water content measurement probe and optical array probes (OAP) recording 2D images of encountered ice crystals. The study herein focuses on ice crystal size properties in high IWC regions, analyzing in detail the 2D image data from the particle measuring probes.
X